\(\frac{3}{1x2}+\frac{3}{2x3}+\frac{3}{3x4}+...+\frac{3}{99x100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
k cho mình nha bạn
1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/99×100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
\(\text{S}\)= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ .... + \(\frac{1}{99}\)- \(\frac{1}{100}\)
\(S\)= ( 1 - \(\frac{1}{100}\)) : 2
\(S\)= \(\frac{99}{100}\): 2
\(S\)= \(\frac{99}{200}\)
tick nhé Lê Thiên Hương
\(B=1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}.\)
\(B=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}+\frac{1}{100}\)
\(B=1+1-\frac{1}{100}=2-\frac{1}{100}\)
\(B=\frac{199}{100}\)
\(C=\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{n\left(n+1\right)}\)
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n}-\frac{1}{n+1}\)
\(C=1-\frac{1}{n+1}\)
\(C=\frac{n+1-1}{n+1}=\frac{n}{n+1}\)
Áp dụng công thức tình dãy số ta có :
\(D=\frac{\left[\left(n-1\right):1+1\right].\left(n+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)
Áp dụng công thức : \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100
=1/1-1/100
=100/100-1/100
=99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
= \(\frac{1}{1}-\frac{1}{100}\)
= \(\frac{99}{100}\)
~~~
#Sunrise
Mình chỉ tính câu b và c thội nhé!.
Ta có:
b) \(1.2+2.3+3.4+...+99.100\)
\(=\frac{99.100.101}{3}=333300\)
c) \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99\right)}{1.99+2.98+3.97+...+99.1}\)
\(=\frac{1+1+2+1+2+3+1+2+3+4+...+1+2+3+...+99}{1.99+2.98+3.97+...+99.1}\)
\(=\frac{\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+....+99}{1.99+2.98+3.97+...+99.1}\)
\(=\frac{1.99+2.98+3.97+...+99.1}{1.99+2.98+3.97+...+99.1}=1\)
\(\frac{3}{1.2}+\frac{3}{2.3}+........+\frac{3}{99.100}\)
\(=3\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)
\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=\frac{3.99}{100}=\frac{297}{100}\)