Tìm M : M= 1/3+13/15+33/35+...+9601/9603+9997/9999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3+13/15+33/35+31/63+.....................+9601/9603+9997/9999
\(=1-\frac{2}{3}+1-\frac{2}{15}+...+1-\frac{2}{9999}\)
\(=\left(1+1+1+1+...+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\right)\)
\(=50-\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{4950}{101}\)
HTDT
\(\frac{1}{3}+\frac{13}{15}+...+\frac{9997}{9999}\)
\(=1-\frac{2}{3}+1-\frac{2}{15}+...+1-\frac{2}{9999}\)
\(=\left(1+1+...+1\right)-\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=50-\left(1-\frac{1}{101}\right)\)
Sau bạn tính tiếp là OK rồi
\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+...+\dfrac{9997}{9999}\)
\(=1-\dfrac{2}{3}+1-\dfrac{2}{15}+1-\dfrac{2}{35}+...+1-\dfrac{2}{9999}\)
\(=\left(1+1+1+...+1\right)-\dfrac{2}{3}+\dfrac{2}{15}+...+\dfrac{2}{9999}\)
\(=50-1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=50-\left(1-\dfrac{1}{101}\right)=50-\dfrac{100}{101}\)
\(=\dfrac{4950}{101}\)
\(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+...+\frac{9997}{9999}=1-\frac{2}{3}+1-\frac{2}{15}+1-\frac{2}{35}+...+1-\frac{2}{9999}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\right)\)
\(=50-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{4950}{101}\)
\(M=1+\frac{1}{5}+\frac{3}{35}+...+\frac{3}{9603}+\frac{3}{9999}\)
\(=\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{97\times99}+\frac{3}{99\times101}\)
\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{97\times99}+\frac{2}{99\times101}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{101}\right)=\frac{150}{101}\)
\(M=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{9603}+\dfrac{2}{9999}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{6}{5}+\dfrac{3}{2}\cdot\dfrac{96}{505}=\dfrac{150}{101}\)