cho a, b, c= 0 và a^2 +b^2 +c^2 = 14 tính a^4+ b^4 +c^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0^2\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Mà \(a^2+b^2+c^2=14\)
\(\Rightarrow14+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-14\Rightarrow ab+bc+ca=-7\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-7\right)^2\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)
Mà \(a+b+c=0\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)(1)
Ta lại có
\(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(14\right)^2\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)
\(\Rightarrow a^4+b^4+c^4=196-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(2)
Thay (1) vào (2)
\(a^4+b^4+c^4=196-2.49=98\)
nha - Cảm ơn
CHÚC BẠN HỌC TỐT
Ta có: a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2(ab + bc + ac) = 0
=> 14 + 2(ab + bc + ac) = 0
=> 2ab + 2bc + 2ac = -14
=> (2ab + 2bc + 2ac)2 = 196
=> 4a2b2 + 4a2c2 + 4b2c2 + 8ab2c + 8a2bc + 8abc2 = 196
=> 4(a2b2 + b2c2 + c2a2) + 8abc(b + a + c) = 196
=> 4(a2b2 + b2c2 + c2a2) = 196
=> 2(a2b2 + b2c2 + c2a2) = 98
Có: a2 + b2 + c2 = 14
=> (a2 + b2 + c2)2 = 196
=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 196
Mà 2(a2b2 + b2c2 + a2c2) = 98
=> a4 + b4 + c4 = 98
Vậy a4 + b4 + c4 = 98
a+b+c = 0
<=> (a+b+c)^2 = 0
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0
<=>14 + 2(ab + ac + bc) = 0
<=> 2(ab + ac + bc) = -14
<=> ab + ac + bc = -7
=> (ab + ac + bc)^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49
Ta có: a^2 + b^2 + c^2 = 14
=> (a^2 + b^2 + c^2)^2 = 14^2
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196
<=> a^4 + b^4 + c^4 + 2 . 49 = 196
<=> a^4 + b^4 + c^4 + 98 = 196
<=> a^4 + b^4 + c^4 = 98
a+b+c = 0
<=> (a+b+c)^2 = 0
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0
<=>14 + 2(ab + ac + bc) = 0
<=> 2(ab + ac + bc) = -14
<=> ab + ac + bc = -7
=> (ab + ac + bc)^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49
Ta có: a^2 + b^2 + c^2 = 14
=> (a^2 + b^2 + c^2)^2 = 14^2
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196
<=> a^4 + b^4 + c^4 + 2 . 49 = 196
<=> a^4 + b^4 + c^4 + 98 = 196
<=> a^4 + b^4 + c^4 = 98
a+b+c=0
=>(a+b+c)2=0
=>a2+b2+c2+2(ab+bc+ac)=0
=>2(ab+bc+ac)=-14(do a2+b2+c2=14)
Ta có:a2+b2+c2=14
=>(a2+b2+c2)2=196
=>a4+b4+c4+2(a2b2+b2c2+a2c2)=196(1)
2(ab+bc+ac)=-14
=>(2ab+2bc+2ac)2=196
=>4(a2b2+c2b2+a2c2)+2abc(a+b+c)=196
Do a+b+c=0
=>4(a2b2+c2b2+a2c2)=196 =>2(a2b2+c2b2+a2c2)=98(2)
Từ(1) và (2) =>a4+b4+c4=98
a2 + b2 + c2=14
hay(a + b + c)2 = 14
a4 + b4 + c4 =(a2 + b2 + c2).(a2 + b2 + c2)=(a+b+c)2 . (a+b+c)2 =14.14=196
k mk nha bạn kb nữa
Từ \(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow-7=ab+bc+ca\)\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\left(\text{vi` a+b+c=0}\right)\)
Ma tu \(a^2+b^2+c^2=14\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=14^2\)
\(\Leftrightarrow a^4+b^4+c^4=14^2-2\cdot49=....\)
a+b+c = 0
<=> (a+b+c)^2 = 0
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0
<=>14 + 2(ab + ac + bc) = 0
<=> 2(ab + ac + bc) = -14
<=> ab + ac + bc = -7
=> (ab + ac + bc)^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49
Ta có: a^2 + b^2 + c^2 = 14
=> (a^2 + b^2 + c^2)^2 = 14^2
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196
<=> a^4 + b^4 + c^4 + 2 . 49 = 196
<=> a^4 + b^4 + c^4 + 98 = 196
<=> a^4 + b^4 + c^4 = 98
a+b+c=0 nha bạn!