cho tam giác nhọn abc.Trên các cạnh AB,BC,CA ta lấy theo thứ tự 3 điểm M,N,P sao cho \(\frac{AM}{AM}=\frac{BN}{BC}=\frac{CP}{CA}=\frac{1}{4}\).Gọi S là diện tích tam giác abc, D là giao điểm của AN và CM,E là giao điểm của AN và BP,F là giao điểm của BP và CM.Tính theo S, diện tích của
a)tam giác MNP
b)tam giác DEF
3.cho tam giác nhon abc và 1 điểm thuộc miền trong của tam giác. Gọi D,E,F theo thứ tự là hình chiếu của P trên các cạnh BC,CA,AB
a)chứng minh BD2+DC2=\(\frac{BC^2}{2}\).
b)xác định vị trí điểm P trong tam giác abc để tổng DC2+EA2+FB2 đạt giá trị nhỏ nhất.