Tìm số tự nhiên n để (n^2+2n+2).(n^2-2n+2) là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
THAM KHẢO :
(n là số nguyên tố)
TH1: n-2 =1 và 2n-5 =p
n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)
TH2: 2n-5=1 và n-2=p
2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(không hợp lí)
TH3: 2n-5=-1 và n-2 = - p
2n-5=-1=>n=2 . Thay n=2 vào n-2=1=> A không là số nguyên tố (không hợp lí)
TH4: n-2=-1 và 2n-5 =-p
n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (hợp lí)
olm ơi trừ điểm nguyễn văn ko bít đi ạ bn ấy trả lời chtt
\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)
\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)
\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)
can
\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)
n=(0,1,2)
du
n=2
ds: n=2
Câu hỏi của Nguyễn Thị Hồng Linh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo link này nhé!
Với n là số tự nhiên
Ta có: \(5^{2n^2-6n+2}-12=25^{n^2-3n+1}-12=25^{n^2-3n}.25-12\)
Với \(n^2-3n=n\left(n-3\right)⋮2\)( vì n, n-3 1 trong 2 số sẽ có sỗ chẵn, hoặc chia trường hợp n chẵn và n lẻ để chứng minh nó chia hết cho 2)
Đặt: \(n^2-3n=2k\)
=> \(5^{2n^2-6n+2}-12=25^{2k}.25-12\equiv\left(-1\right)^{2k}.25-12\equiv25-12\equiv0\left(mod13\right)\)
Mà \(5^{2n^2-6n+2}-12\)là số nguyên tố
=> \(5^{2n^2-6n+2}-12=13\Leftrightarrow5^{2n^2-6n+2}=25=5^2\Leftrightarrow2n^2-6n+2=2\)
\(\Leftrightarrow\orbr{\begin{cases}n=0\\n=3\end{cases}}\) thử lại thỏa mãn
Vậy n=0 hoặc n=3
Ta có : \(n^2+2n+2=\left(n+1\right)^2+1\ge1\forall n\)
Nên \(\left(n^2+2n+2\right)\left(n^2-2n+2\right)\) là số nguyên tố thì :
\(\orbr{\begin{cases}n^2+2n+2=1\\n^2-2n+2=1\end{cases}}\)
+) Với \(n^2+2n+2=1\) \(\Leftrightarrow\left(n+1\right)^2=0\)
\(\Leftrightarrow n=-1\) ( Loại do n tự nhiên )
+) với \(n^2-2n+2=1\) \(\Leftrightarrow\left(n-1\right)^2=0\)
\(\Leftrightarrow n=1\) ( Thỏa mãn )
Thử lại với \(n=1\) thì \(\left(n^2+2n+2\right)\left(n^2-2n+2\right)=\left(1+2+2\right)\left(1-2+2\right)=5\) là số nguyên tố.
Vậy \(n=1\) thỏa mãn đề.