K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)

Suy ra \(P\ge10\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min P = 10 khi x = y = 1/2

20 tháng 7 2017

Suy ra P≥10

Dấu "=" xảy ra khi và chỉ khi {

x+y=1
x=y

⇔x=y=12 

Vậy Min P = 10 khi x = y = 1/2

12 tháng 5 2017

A=4 

tk đi mình gửi kq cho

12 tháng 5 2017

Ta có:

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Rightarrow A=xy\ge4\) 

Dấu = xảy ra khi x = y = 2 

22 tháng 9 2018

Ta có:

\(P=\frac{18}{x^2+y^2}+\frac{9}{xy}+\frac{4}{xy}=\frac{18}{x^2+y^2}+\frac{18}{2xy}+\frac{4}{xy}\)

\(=18.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4}{xy}\ge18.\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{4}{\frac{\left(x+y\right)^2}{4}}\)

\(=18.4+4.4=72+16=88\)

Dấu bằng xảy ra: \(\Leftrightarrow x=y=\frac{1}{2}\)

6 tháng 8 2016

mk không biết đề thêm đk \(x+y\le1\) làm j

Vì x,y>0 nên theo bđt Cô-Si:

\(P=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

=>P\(\ge\) 2

=>MinP=2

Dấu "=" xảy ra \(< =>x=y\)

Vậy..........

24 tháng 5 2021

`P=1/(x^2+y^2)+1/(xy)+4xy`

`=1/(x^2+y^2)+1/(2xy)+4xy+1/(4xy)+1/(4xy)`

Áp dụng bunhia dạng phân thức

`=>1/(x^2+y^2)+1/(2xy)>=4/(x+y)^2`

Mà `(x+y)^2<=1`

`=>1/(x^2+y^2)+1/(2xy)>=4`

Áp dụng cosi:

`4xy+1/(4xy)>=2`

`4xy<=(x+y)^2<=1`

`=>1/(4xy)>=1`

`=>P>=4+2+1=7`

Dấu "=" `<=>x=y=1/2`

24 tháng 5 2021

Cảm ơn ạ !

25 tháng 3 2021

xin nhá xin nhá =))

Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x=y=1/2

Vậy ...