Tổng bình phương của 1974 số tự nhiên liên tiếp có phải là số chính phương hay không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức sau:
1² + 2² + 3² + .... + n² = [ n(n+1)(2n+1) ]/6 (*) ∀ n ∈ N*
Chứng minh ( bằng phương pháp quy nạp)
Với n = 1 thì 1² + 2² + 3² + .... + n² = 1² = 1
và [ n(n+1)(2n+1) ]/6 = (1.2.3)/6 = 1
=> (*) đúng với n = 1
Giả sử (*) đúng với n = k ∈ N*. => ta có:1² + 2² + 3² + .... + k² = [ k(k+1)(2k+1) ]/6
Ta phải c/m (*) đúng với n = k + 1. Hay ta phải chứng minh
1² + 2² + 3² + .... + k² + (k+1)² = [ (k+1)(k+2)(2k+3) ] / 6 (chỗ này mình làm tắt)
Ta có : 1² + 2² + 3² + .... + k² + (k+1)² = [ 1² + 2² + 3² + .... + k² ] + (k+1)²
= [ k(k+1)(2k+1) ]/6 + (k+1)² = [ k(k+1)(2k+1) + 6(k+1)² ]/6
= [ (k+1)(2k² + k) + 6(k+1)² ]/6 = [ (k+1)(2k² + k + 6k + 6) ]/6
= [ (k+1)(2k² + 7k + 6) ]/6 = [ (k+1)(2k² + 4k + 3k + 6) ]/6
= [ (k+1)(k+2)(2k+3) ]/6. => theo nguyên lý quy nạp thì (*) đúng với ∀ n ∈ N*
Áp dụng với n = 1974 ta được:
1² + 2² + 3² + .... + 1974² = ( 1974.1975.3949 )/6 = 2565961475
Khai căn 2565961475 thì thấy kết quả không phải số nguyên => 2565961475 không phải số chính phương => biểu thức đã cho không phải số chính phương.
Phương pháp quy nạp là phương pháp thế nào bạn? Giải thích rõ giùm mình với. Cảm ơn <3
Cau hoi tuong tu nhe
Ban chi can doi so 5 thanh so 3 roi lam
Tick nha
Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )
Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)
Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5
\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )
Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có :
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1:
Ta có A= 20k + 10 = 4m + 2 (m thuộc N) ko là số chính phương
TH2:
Ta có: A= 20k + 15 = 4m + 3(m thuộc N) ko là số chính phương
đpcm
Gọi 5 số tự nhiên liên tiếp là \(n-2;n-1;n;n+1;n+2\)
Đặt tổng bình phương của chúng là \(A=\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2\)
\(=5n^2+10=5.\left(n^2+2\right)\)
n2 có tận cùng là 3 hoặc 8 \(\Rightarrow\) n2 + 2 có tận cùng là 5 hoặc 0 \(\Rightarrow\) n2 + 2 chia hết cho 5.
\(\Rightarrow\) 5.(n2 + 2) chia hết cho 25 \(\Rightarrow\) A không phải số chính phương.
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có :
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1:
Ta có A= 20k + 10 = 4m + 2 (m thuộc N) ko là số chính phương
TH2:
Ta có: A= 20k + 15 = 4m + 3(m thuộc N) ko là số chính phương
gọi 5 số tự nhiên đó lần lượt là n-2;n-1;n;n+1;n+2
Ta có:
(*) (n-2)2=n(n-2)-2(n-2)=n2-4n+4 (1)
(*)(n-1)2=n(n-1)-1(n-1)=n2-2n+1 (2)
(*)n2=n2 (3)
(*)(n+1)2=n(n+1)+1(n+1)=n2+2n+1(4)
(*)(n+2)2=n(n+2)+2(n+2)=n2+4n+4 (5)
Cộng liên tiếp (1);(2);(3);(4);(5)
pt<=>n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4
=(n2+n2+n2+n2+n2)+(-4n-2n+2n+4n)+(4+1+1+4)
=5n2+10=5(n2+2) chia hết cho 5 nhưng ko chia hết cho 25
=>n2+n ko chia hết cho 5
=>đpcm
ta có: n^2 + (n-1)^2 +(n+1)^2 +(n-2)^2 +(n+2)^2
= n^2 + n^2 - 2n +1+ n^2 +2n+1 +n^2 - 4n+4+ n^2 +4n+4
= 5n^2 +10 không phải số chính phương
Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)
Ta xét tổng của dãy trên:
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)
<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)
Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp
Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:
\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)
= \(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)
=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2
Mà một số chính phương khi chia 3 dư 0 hoac 1
Vậy tổng trên không thể là số chính phương
hay ket ban voi luffy