Cho tam giác ABC . Kẻ BH vuông góc AC . Kẻ CK vuông góc AB . Cho BH = CK . Chứng minh tam giác ABC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông BKC và tam giác vuông CHB có:
CK = BH (gt)
BC chung
=> Tam giác vuông BKC = Tam giác vuông CHB (ch - cgv)
=> ^B = ^C (2 góc tương ứng)
Xét tam giác ABC: ^B = ^C (cmt)
=> Tam giác ABC cân tại A
Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{BCA}=\widehat{CBA}\) hay \(\widehat{BCH}=\widehat{CBA}\)
Xét hai tam giác vuông BHC và CKB có:
\(\left\{{}\begin{matrix}BC\text{ chung}\\\widehat{BCH}=\widehat{CBK}\end{matrix}\right.\) \(\Rightarrow\Delta_VBHC=\Delta_VCKB\left(ch-gn\right)\)
\(\Rightarrow CH=BK\) (1)
Mà \(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\)
\(\Rightarrow AK+BK=AH+CH\) (2)
(1);(2) \(\Rightarrow AK=AH\)
\(\Rightarrow\Delta AHK\) cân tại A
a ) Vì \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow\widehat{B}=\widehat{C}=50^o\)
Ta có : \(\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-\left(50^o+50^o\right)=180^o-100^o=80^o\)
b ) Xét \(\Delta KBC\) và \(\Delta HCB\) có :
\(\widehat{BKC}=\widehat{CHB}=90^o\)
BC là cạnh chung
\(\widehat{C}=\widehat{B}\left(cmt\right)\)
\(\Rightarrow\Delta KBC=\Delta HCB\) ( cạnh huyền - góc nhọn )
\(\Rightarrow KC=BH\)
C ) Vì \(\Delta KBC=\Delta HCB\left(cmt\right)\)
\(\Rightarrow\widehat{BCK}=\widehat{CBH}\)
\(\Rightarrow\Delta OBC\) cân tại O ( đpcm)
a)Vì: ΔABC cân tại A(gt)
=> \(\widehat{B}=\widehat{C}=50^o\)
Có: \(\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-\left(50^o+50^o\right)=180^o-100^0=80^o\)
b)Xét ΔKBC và ΔHCB có:
\(\widehat{BKC}=\widehat{CHB}=90^o\)
BC: cạnh chung
\(\widehat{C}=\widehat{B}\left(cmt\right)\)
=> ΔKBC=ΔHCB(cạnh huyền-góc nhọn)
=>KC=BH
c)Vì: ΔKBC=ΔHCB(cmt)
=> \(\widehat{BCK}=\widehat{CBH}\)
=>ΔOBC cân tại O
Mk k vẽ hình nữa nha!!!
a/ Vì ΔABC cân tại A(gt) => \(\widehat{B}=\widehat{C}=50^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
hay \(\widehat{A}+50^o+50^o=180^o\Rightarrow\widehat{A}=180^o-50^o-50^o=80^o\)
b/ Xét 2 Δ vuông: ΔBKC và ΔCHB có:
BC: Cạnh chung
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
=> ΔBKC = ΔCHB (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng) (đpcm)
c/ Vì ΔBKC = ΔCHB (ý b)
=> \(\widehat{HBC}=\widehat{KCB}\) (2 góc tương ứng)
=> ΔOBC cân tại O (đpcm)
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
=>ΔABH=ΔACK
b: góc KBC+góc ICB=90 độ
góc IBC+góc HCB=90 độ
mà góc KBC=góc HCB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
4