so sanh
2^2014+1/2^2014 va 2^2014+2/2^2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
\(Vì\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)
\(=>\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)
Ủng hộ mk nha ^_-
\(A=\frac{2015^{2014}+1}{2015^{2014}-1}=\frac{2015^{2014}-1+2}{2015^{2014}-1}=1+\frac{2}{2015^{2014}-1}.\)
\(B=\frac{2015^{2014}-1}{2015^{2014}-3}=\frac{2015^{2014}-3+2}{2015^{2014}-3}=1+\frac{2}{2015^{2014}-3}\)
mà \(\frac{2}{2015^{2014}-1}< \frac{2}{2015^{2014}-3}\)( 20152014 -1 > 20152014 - 3)
\(\Rightarrow A< B\)
\(\frac{2013}{2014}\)=\(\frac{2014-1}{2014}\)=\(1-\frac{1}{2014}\)
\(\frac{2003}{2004}=\frac{2004-1}{2004}=1-\frac{1}{2004}\)
\(\frac{1}{2014}< \frac{1}{2004}\)suy ra\(1-\frac{1}{2014}>1-\frac{1}{2004}\)
Nên \(\frac{2013}{2014}>\frac{2003}{2004}\)
\(\frac{2012}{2013}\)và \(\frac{2013}{2014}\)
=>\(\frac{2012}{2013}\) >\(\frac{2013}{2014}\) vì rút gọn\(\frac{2012}{2013}\frac{2013}{2014}=\frac{2012}{1}\frac{1}{2014}\)
=>\(\frac{4052168}{2014}>\frac{2014}{2014}\)
ĐÓ MÌNH LÀM XONG RỒI