K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

Có :

\(11^2=121\)

\(111^2=12321\)

\(...\)

\(\Rightarrow12345678987654321=111111111^2\)

Số 12345678987654321 là mọt số chính phương

Số 12345678987654321 là số chính phương của :

số 111111111

25 tháng 9 2018

C=2+4+6+...+2n
   =(2n+2)+[(2n-2)+4]+[(2n-4)+6]+...+[(n+2)+n]
   =2(n+1)n/2
   =(n+1)n
vậy C không phải là số chính phương

4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
4 tháng 1 2020

Ta có: Đặt a = 2013

Khi đó, ta có: A = a(a + 2)(a + 4)(a + 6) + 16

A = [a(a + 6)][(a + 2)(a + 4)] + 16

A = (a2 + 6a)(a2 + 6a + 8) + 16

A = (a2 + 6a) + 8(a2 + 6a) + 16

A = (a2 + 6a + 4)2

=> A là số chính phương

=> bình phương của 20132 + 6.2013 + 4 = 4064251

(biến đổi trực tiếp luôn cũng được, không cần phải đặt)

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

11 tháng 1 2023

const
fi='sochinhphuong.inp';
fo='sochinhphuong.out';
var f,g:text;n:longint;
function scp(n:longint):boolean;
begin
        if (sqr(trunc(sqrt(n)))=n) then exit (true);
        exit (false);
end;
begin
        assign(f,fi);reset(f);
        assign(g,fo);rewrite(g);
        readln(f,n);
        if scp(n) then writeln(g,'yes') else
        writeln(g,'no');
        close(f);close(g);
end.