Cho tam giác $A B C$, chứng minh rằng:
a) $\cot A=\dfrac{b^{2}+c^{2}-a^{2}}{4 S}$.
b) $\cot A+\cot B+\cot C \geq \sqrt{3}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đùa tí :v, Ta có:
\(tanA+tanB+tanC=tanAtanBtanC\)
Vi` vay \(cotAcotB+cotBcotC+cotCcotA=1\)
Va` \(\left(cotA-cotB\right)^2+\left(cotB-cotC\right)^2+\left(cotC-cotA\right)^2\ge0\)
Vi` vay \(cot^2A+cot^2B+cot^2C\ge1\)
Then \(\left(cotA+cotB+cotC\right)^2=cot^2A+cot^2B+cot^2C+2\left(cotAcotB+cotBcotC+cotCcotA\right)\ge3\)
Nen \(cotA+cotB+cotC\ge\sqrt{3}\)
Xay ra khi \(cotA=cotB=cotC\)
\(cotx\) là hàm lồi trên \(\left(0;\frac{\pi}{2}\right)\) và \(A,B,C\in\left(0;\frac{\pi}{2}\right)\)
Thì theo BĐT Jensen ta có:
\(cotA+cotB+cotC\ge3cot\left(\frac{A+B+C}{3}\right)=\sqrt{3}\)
Xong :v
a/ Ta có: \(\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\S=\frac{1}{2}ac.sinB\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}cosB=\frac{a^2+c^2-b^2}{2ac}\\sinB=\frac{2S}{ac}\end{matrix}\right.\)
\(\Rightarrow cotB=\frac{cosB}{sinB}=\frac{\left(a^2+c^2-b^2\right).ac}{2ac.2S}=\frac{a^2+c^2-b^2}{4S}\)
b/ Tương tự: \(cotA=\frac{b^2+c^2-a^2}{4S}\) ; \(cotC=\frac{a^2+b^2-c^2}{4S}\)
\(\Rightarrow cotA+cotB+cotC=\frac{a^2+b^2+c^2}{4S}\)
Theo tính chất của tam giác, ta có:
\(A+B+C=180^0\)
\(\Rightarrow\dfrac{A+B+C}{2}=90^0\)
\(\Rightarrow\dfrac{B+C}{2}=90^0-\dfrac{A}{2}\)
\(\Rightarrow tan\left(\dfrac{B+C}{2}\right)=tan\left(90^0-\dfrac{A}{2}\right)\)
\(\Rightarrow tan\left(\dfrac{B+C}{2}\right)=cot\left(\dfrac{A}{2}\right)\)
Theo đầu bài ta có : \(\cot\frac{A}{2}+\cot\frac{C}{2}=2\cot\frac{B}{2}\Leftrightarrow\frac{\sin\frac{A+C}{2}}{\sin\frac{A}{2}\sin\frac{C}{2}}=2\frac{\cos\frac{B}{2}}{\sin\frac{B}{2}}=2\frac{\sin\frac{A+C}{2}}{\cos\frac{A+C}{2}}\)
\(\Leftrightarrow\sin\left(\frac{A+C}{2}\right)\cos\left(\frac{A+C}{2}\right)=2\sin\frac{A}{2}\sin\frac{C}{2}\sin\frac{A+C}{2}=\left(\cos\frac{A-C}{2}-\cos\frac{A+C}{2}\right)\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\frac{A+C}{2}\cos\frac{A+C}{2}=\cos\frac{A-C}{2}\sin\frac{A+C}{2}\)
\(\Leftrightarrow2\sin\left(A+C\right)=\frac{1}{2}\left(\sin A+\sin C\right)\)
\(\Leftrightarrow\sin A+\sin C=2\sin B\Rightarrow a+c=2b\)
Chứng tỏ 3 cạnh của tam giác lập thành cấp số cộng
`Answer:`
a) \(a^2=b^2+c^2-2bc\cos A\)
\(2S=bc.\sin A\)
\(\Rightarrow2bc=\frac{4S}{\sin A}\)
\(\Rightarrow a^2=b^2+c^2-\frac{4S\cos A}{\sin A}=b^2+c^2-4S\cot A\)
\(\Rightarrow\cot A=\frac{b^2+c^2-a^2}{4S}\)