Tam giác ABC cân tại A. Gọi I là trung điểm BC. Vẽ IH ⊥ AB( H ∈ AB), IK ⊥ AC(K ∈ AC). Chứng minh rằng:
a) ΔABI = ΔACI
b) ΔHBI = ΔKCI
c) Cho AC = 13cm, IC = 12cm. Tính AI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét 2 tam giác ABI và ACI:
AI chung
AB = AC(tam giác ABC cân tại A)
IB = IC (I là trung điểm của BC)
=> tam giác ABI = tam giác ACI (c-c-c) (đpcm)
=> BI = CI (2 cạnh tương ứng)
b. HI ⊥ AB => H = 90o
KI ⊥ AC => K = 90o
Xét tam giác HBI và tam giác KCI:
H=K=90o
BI = CI(cma)
B = C (tam giác ABC cân tại A)
=> tam giác HBI = tam giác KCI
c. ta có tam giác HBI = tam giác ACI
=> AIB = AIC (2 góc tương ứng)
Mà 2 góc này ở vị trí kề bù.
=> AIB = AIC= \(\dfrac{180^o}{2}\)= 90o
=> tam giác AIC vuông tại I
Áp dụng định lí Py-ta-go vào tam giác AIC, ta có:
AI2 = AC2 - IC2
= 169 - 144 = 36
=> AI = 6 cm
a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có
IB=IC
\(\widehat{HBI}=\widehat{KCI}\)
Do đó: ΔIHB=ΔIKC
b: Ta có: ΔIHB=ΔIKC
nên IB=IC
mà IB>IK
nên IB>IK
c: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
HI=KI
Do đó: ΔAHI=ΔAKI
Suy ra: AH=AK
Xét ΔHIE vuông tại H và ΔKIF vuông tại K có
IH=IK
\(\widehat{HIE}=\widehat{KIF}\)
Do đó: ΔHIE=ΔKIF
Suy ra: HE=KF
Ta có: AH+HE=AE
AK+KF=AF
mà AH=AK
và HE=KF
nên AE=AF
hay ΔAEF cân tại A
a) Xét tg ABI và ACI có :
AB=AC( ABC cân tại A)
AI-chung
\(\widehat{AIB}=\widehat{AIC}=90^o\)
=> Tg ABI=AIC (ch-gn)
=> IB=IC
b) Có : \(IB=IC=\frac{BC}{2}=\frac{12}{2}=6cm\)
Xét tg ABI vuông tại I có :
AB2=AI2+IB2
=>102=AI2+62
=>AI=8cm
c) Có :\(\widehat{ABC}+\widehat{HIB}=90^o\)
\(\widehat{ACB}+\widehat{KIC}=90^o\)
\(\widehat{ABC}=\widehat{ACB}\)(ABC cân A)
\(\Rightarrow\widehat{HIB}=\widehat{KIC}\)
Lại có :\(\widehat{IHB}=\widehat{IKC}=90^o\)
IB=IC(cmt)
=> Tg IHB=IKC(ch-gn)
d) Có : MN//BC
\(\Rightarrow\widehat{MIB}=\widehat{IMN}\left(SLT\right)\)
và \(\widehat{KIC}=\widehat{INM}\left(SLT\right)\)
Mà :\(\widehat{HIB}=\widehat{KIC}\left(cmt\right)\)
\(\Rightarrow\widehat{IMN}=\widehat{INM}\)
=> Tg IMN cân tại I
Ý còn lại tự CM
#H