K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2022

a. Xét 2 tam giác ABI và ACI:

     AI chung

      AB = AC(tam giác ABC cân tại A)

      IB = IC (I là trung điểm của BC)

    => tam giác ABI = tam giác ACI (c-c-c) (đpcm)

  => BI = CI (2 cạnh tương ứng)

  b. HI ⊥ AB => H = 90o

      KI ⊥ AC => K = 90o

       Xét tam giác HBI và tam giác KCI:

        H=K=90o

        BI = CI(cma)

       B = C (tam giác ABC cân tại A)

     => tam giác HBI = tam giác KCI

c. ta có tam giác HBI = tam giác ACI

    => AIB = AIC (2 góc tương ứng)

   Mà 2 góc này ở vị trí kề bù.

   => AIB = AIC= \(\dfrac{180^o}{2}\)= 90o

    => tam giác AIC vuông tại I

      Áp dụng định lí Py-ta-go vào tam giác AIC, ta có:

        AI= AC2 - IC2

              = 169 - 144 = 36

   => AI = 6 cm

8 tháng 2 2022

hhhhhhhhhh

a: Xét ΔIHB vuông tại H và ΔIKC vuông tại K có

IB=IC

\(\widehat{HBI}=\widehat{KCI}\)

Do đó: ΔIHB=ΔIKC

b: Ta có: ΔIHB=ΔIKC

nên IB=IC

mà IB>IK

nên IB>IK

c: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

HI=KI

Do đó: ΔAHI=ΔAKI

Suy ra: AH=AK

Xét ΔHIE vuông tại H và ΔKIF vuông tại K có

IH=IK

\(\widehat{HIE}=\widehat{KIF}\)

Do đó: ΔHIE=ΔKIF

Suy ra: HE=KF

Ta có: AH+HE=AE

AK+KF=AF

mà AH=AK

và HE=KF

nên AE=AF

hay ΔAEF cân tại A

14 tháng 3 2020

I thuoc ab nha ^^

28 tháng 7 2021

a) Xét tg ABI và ACI có :

AB=AC( ABC cân tại A)

AI-chung

\(\widehat{AIB}=\widehat{AIC}=90^o\)

=> Tg ABI=AIC (ch-gn)

=> IB=IC

b) Có : \(IB=IC=\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét tg ABI vuông tại I có :

AB2=AI2+IB2

=>102=AI2+62

=>AI=8cm

c) Có :\(\widehat{ABC}+\widehat{HIB}=90^o\)

\(\widehat{ACB}+\widehat{KIC}=90^o\)

\(\widehat{ABC}=\widehat{ACB}\)(ABC cân A)

\(\Rightarrow\widehat{HIB}=\widehat{KIC}\)

Lại có :\(\widehat{IHB}=\widehat{IKC}=90^o\)

IB=IC(cmt)

=> Tg IHB=IKC(ch-gn)

d) Có : MN//BC

\(\Rightarrow\widehat{MIB}=\widehat{IMN}\left(SLT\right)\)

và \(\widehat{KIC}=\widehat{INM}\left(SLT\right)\)

Mà :\(\widehat{HIB}=\widehat{KIC}\left(cmt\right)\)

\(\Rightarrow\widehat{IMN}=\widehat{INM}\)

=> Tg IMN cân tại I

Ý còn lại tự CM

#H