Cho tam giac ABC co AD la phan giac goc A . Ve tia CE sao cho ACE = BAC va hai goc nay la hai goc so le trong . Ve tia CM la tia phan giac cua goc ACE. Chung minh . a) AB//CE. b) AD//CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình đơn giản rồi nên em tự kẻ ra nhé!
a, Xét ΔABD và ΔACE có:
\(\widehat{AEC}\)=\(\widehat{ABD=90^o}\)(giả thiết)
AB=AC(2 cạnh bên Δ cân ABC)
\(\widehat{A}\) chung
=>ΔABD=ΔACE(g.c.g)(đpcm)
b, Vì AE=AD
và HE=HD
=>AH là đường trung trực của ED(đpcm)
c, Xét ΔDKC và ΔDBC có:
\(\widehat{BDC}\)=\(\widehat{KDC}\)=90o(gt)
BD=KD(gt)
DC là cạnh chung
=>ΔDKC=ΔDBC(c.g.c)
DBC=DKC(2 cạnh tương ứng) (1)
BH=CH
=>ΔHBC cân tại H
=>DBC=ECB(2 góc ở đáy Δ cân) (2)
Từ (1) và (2)=>ECB=DKC(đpcm)
Đây là mới làm theo đề trên câu hỏi thôi còn em xem lại đề nhé, hình như đề thiếu thì phải!
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!