Chứng minh rằng : \(3n+3+2017.b^2\) là hợp số , với b la số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3 : ko vì tổng của hai số nguyên tố là 2003 nên
Trong đó phải có 1 số chẵn và một số lẻ
Mà số nguyên tố duy nhất chẵn là số 2
=> Số còn lại bằng 2001 mà 2001 chia hết cho 3 nên nó là hợp số
LINK:https://olm.vn/hoi-dap/detail/8739623501.html
TH1:n=3 => 3n+2=11 là snt
TH2:n>3
+)n=3k+1(k\(\in\)N) => 3n+2=3(3k+1)+2=9k+5 là snt
+)n=3k+2(k\(\in\)N) => 3n+2=3(3k+2)+2=9k+8 là snt
Qua các trường hợp trên ta luôn có đpcm
xét n=4k, 4k+1, 4k+2, 4k+3
lưu ý : số chính phương chia 4 dư 0 hoặc 1
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.