K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

Ta có:

2016 x 2016

= (2015 + 1) x 2016

= 2015 x 2016 + 2016

2015 x 2017

= 2015 x (2016 + 1)

= 2015 x 2016 + 2015

Vì 2016 > 2015

=> 2016 x 2016 > 2015 x 2017

27 tháng 7 2016

Thanks chị nha !!!!! <3 

\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)

\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)

mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)

nên A>B

21 tháng 6 2015

2014/x + 2015/y + 2016/z > 2014+2015+2016/x+y+z

bạn ko nên trả lời quá nhiều cùng 1 câu hỏi mà kết quả trả lời giống nhau.

a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)

b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    

\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)

\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    \(\frac{2015}{2016}\)<    \(\frac{2017}{2016}\)và    \(\frac{2016}{2015}\)

18 tháng 12 2020

Ta có :

A= (20162015 + 20152015 )2016 

A= 20162015 . 2016 + 20152015 . 2016 (1)

B= ( 20162016 + 201520162015

B= 20162016 . 2015 + 20152016 . 2015 (2)

Từ (1) và (2) suy ra A = B

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

21 tháng 9 2017

Ta có :

\(x=\frac{2016^{2017}+1}{2016^{2016}+1}\)

\(\frac{1}{2016}x=\frac{2016^{2017}+1}{2016^{2017}+2016}=\frac{2016^{2017}+2016-2015}{2016^{2017}+2016}\)

\(\Rightarrow\frac{1}{2006}x=1-\frac{2015}{2016^{2017}+2016}\)

Ta lại có :

\(y=\frac{2016^{2016}+1}{2016^{2015}+1}\)

\(\Rightarrow\frac{1}{2016}y=\frac{2016^{2016}+1}{2016^{2016}+2016}=\frac{2016^{2016}+2016-2015}{2016^{2016}+2016}\)

\(\Rightarrow\frac{1}{2016}y=1-\frac{2015}{2016^{2016}+2016}\)

Mà \(\frac{2015}{2016^{2017}+2016}< \frac{2015}{2016^{2016}+2016}\)(so sánh mẫu)

\(\Rightarrow1-\frac{2015}{2016^{2017}+2016}>1-\frac{2015}{2016^{2016}+2016}\)

\(\Rightarrow\frac{1}{2016}x>\frac{1}{2016}y\)

\(\Rightarrow x>y\)

DÀI QUÁ KHÔNG TÍNH ĐƯỢC. CÁI NÀY CÓ MÀ ĐI HỎI THẦN ĐỒNG VỀ MÔN TOÁN ĐI

29 tháng 6 2016

\(A=2015\cdot2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016\times2016.\)