\(\frac{x}{4}=\frac{y}{6}\)và2x+y=28
tìm x va y nha
ai nhanh tui cho 5 k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{21}=\frac{y}{28}\)
\(\frac{z}{5}=\frac{y}{7}\Rightarrow\frac{y}{28}=\frac{z}{20}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}=\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)
Ta có: \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4};\frac{z}{5}=\frac{y}{7}\\2x+3y-z=106\end{cases}}\) \(\Rightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}\) \(\Rightarrow\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)
Vậy: x = 1.21 = 21
y = 1.28 = 28
z = 1.20 = 20
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}=>\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
=> x=2.15=30
y=2.20=40
z=2.28=56
Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)
*Bài làm:
a)*Ta có : \(\frac{x}{10}\) = \(\frac{y}{6}\) = \(\frac{z}{21}\)
\(\Rightarrow\) \(\frac{5x}{50}\) = \(\frac{y}{6}\) = \(\frac{2z}{42}\) . \(và5x+y-2z=28\)
\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{5x}{50}\) = \(\frac{y}{6}\) = \(\frac{2z}{42}\) = \(\frac{5x+y-2z}{50+6-42}\) = \(\frac{28}{14}\) = \(2\)
\(\Rightarrow\left\{{}\begin{matrix}5x=2.50=100\\y=2.6=12\\2z=2.42=84\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\)
*Vậy \(\left(x;y;z\right)=\left(20;12;42\right)\) .
b)*Ta có: \(\frac{x}{3}\) = \(\frac{y}{4}\) ; \(\frac{y}{5}\) = \(\frac{z}{7}\)
\(\Rightarrow\) \(\frac{x}{15}\) = \(\frac{y}{20}\) ; \(\frac{y}{20}\) = \(\frac{z}{28}\)
\(\Rightarrow\) \(\frac{x}{15}\) = \(\frac{y}{20}\) = \(\frac{z}{28}\)
\(\Rightarrow\) \(\frac{2x}{30}\) = \(\frac{3y}{60}\) = \(\frac{z}{28}\) .\(và2x+3y-z=124\)
\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{2x}{30}\) = \(\frac{3y}{60}\) = \(\frac{z}{28}\) = \(\frac{2x+3y-z}{30+60-28}\) = \(\frac{124}{62}\) = \(2\)
\(\Rightarrow\left\{{}\begin{matrix}2x=2.30=60\\3y=2.60=120\\z=2.28=56\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=56\end{matrix}\right.\)
*Vậy \(\left(x;y;z\right)=\left(30;40;56\right)\) .
c) *Ta có: \(\frac{2x}{3}\) = \(\frac{3y}{4}\) = \(\frac{4z}{5}\)
\(\Rightarrow\) \(\frac{40x}{60}\) = \(\frac{45y}{60}\) = \(\frac{48z}{60}\)
\(\Rightarrow40x=45y=48z\)
\(\Rightarrow\) \(\frac{40x}{720}\) = \(\frac{45y}{720}\) = \(\frac{48z}{720}\)
\(\Rightarrow\) \(\frac{x}{18}\) = \(\frac{y}{16}\) = \(\frac{z}{15}\) .\(vàx+y+z=49\)
\(\Rightarrow\) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{18}\) = \(\frac{y}{16}\) = \(\frac{z}{15}\) = \(\frac{x+y+z}{18+16+15}\) =\(\frac{49}{49}\) = \(1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.18=18\\y=1.16=16\\z=1.15=15\end{matrix}\right.\)
*Vậy \(\left(x;y;z\right)=\left(18;16;15\right)\) .
d) *Ta có: Đặt: \(\frac{x}{2}\) = \(\frac{y}{3}\) = \(k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
\(Mà\) \(xy=54\) (theo đề bài)
\(\Rightarrow\) \(xy=2k.3k=54\)
\(\Rightarrow\) \(xy=6k^2=54\)
\(\Rightarrow\) \(k^2=9\)
\(\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)
~ Với \(k=3\) thì: \(\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\end{matrix}\right.\)
~ Với \(k=-3\) thì: \(\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=3.\left(-3\right)=-9\end{matrix}\right.\)
*Vậy \(\left(x;y\right)=\left\{\left(6;9\right),\left(-6;-9\right)\right\}\) .
*Chúc bạn hok tốt!
Mình thấy bạn hỏi dạng bài này nhiều rồi mà. nguyen ngoc son
x/y=3/4=>x/3=y/4=>=>x/15=y/20
y/z=5/7=>y/5=z/7=>y/20=z/28
=>x/15=y/20=z/28=>2x/30=3y/60=z/28
áp dụng.. ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=\) 3
từ 2x/30=3=>2x=90=>x=45
3y/60=3=>3y=180=>y=60
z/28=3=>z=84
vậy..
tick nhé
Có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{z}=\frac{5}{7}\Rightarrow7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2)=>\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\) (Vì 2x+3y-z=186)
Vì \(\frac{2x}{30}=3\Rightarrow2x=90\Rightarrow x=45\)
Vì \(\frac{3y}{60}=3\Rightarrow3y=180\Rightarrow y=60\)
Vì \(\frac{z}{28}=3\Rightarrow z=84\)
Vậy \(x=45;y=60;z=84\)
a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42
áp dụng tính chất của dãy tỉ số = nhau ta có:
5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2
suy ra: 5x/50=2=>5x=100=>x=20
y/6=2=>y=12
2z/42=2=>84=>z=42
b)3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số = nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra :
x/10=2=>x=20
y/15=2=>y=30
z/21=2=>z=42
c) x/3 = y/4 ; y/3 = z/5
=>x/9=y/12;y/12=z/20
=>x/9=y/12=z/20
=>2x/18=3y/36=z/20
áp dụng tính chất của dãy tỉ số = nhau ta có:
2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3
suy ra
2x/18=3=>2x=54=>x=27
3y/36=3=>3y=108=>y=36
z/20=3=>z=60
d)2x/3 = 3y/4 = 4z/5
=>12x/18=12y/16=12z/15
áp dụng tính chất của dãy tỉ số = nhau ta có:
12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12
suy ra
12x/18=12=>12x=216=>x=18
12y/16=12=>12y=192=>y=16
12z/15=12=>12z=180=>z=15
d)đặt x-1/2=y-2/3=z-3/4=k
=>x=2k+1
y=3k+2
z=4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:
2(2k+1)+3(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2k+1=2.5+1=11
y=3k+2=3.5+2=17
z=4k+3=4.5+3=23