CMR: n4- 4n3-4n2+16n chia hết cho 384 với n TN chắn
b)m3+20m chia hết cho 48 với m là số nguyên chẵn
c)n12-n8-n4+513 chia hết cho 512 với n là số nguyên lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đề bài sai, với \(n=1;2;3...\) thì đều sai hết
b. Đề bài sai, với \(n=0;2;4...\) thì vẫn sai hết
Ta có: A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
a, Ta có m là số nguyên chẵn
=> m có dạng 2k
=> m3+20m=(2k)3+20.2k
=8k3+40k=8k(k2+5)
Cần chứng minh k(k2+5) chia hết cho 6
Nếu k chẵn => k(k2+5) chia hết cho 2
Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2
Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3
Nếu k chia 3 dư 1 hoặc dư 2 thì
k có dạng 3k+1 hoặc 3k+2
=> (3k+1)[(3k+1)2+5)]
=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3
=> k(k2+5) chia hết cho 3
Nếu k chia 3 dư 2
=> k có dạng 3k +2
=> k(k2+5)=(3k+2)[(3k+2)2+5]
=(3k+2)(9k2+12k+9)
Vì 9k2+12k +9 chia hết cho 3
=> k(k^2+5) chia hết cho 3
=> k(k2+5) chia hết cho 6
=> 8k(k2+5) chia hết cho 48
=> dpcm
Lời giải:
Gọi biểu thức là $A$. Đặt $n=2k+1$ với $k$ nguyên.
$A=n^8(n^4-1)-(n^4-1)=(n^4-1)(n^8-1)$
$=(n^4-1)(n^4-1)(n^4+1)$
$=(n-1)^2(n+1)^2(n^2+1)^2(n^4+1)$
$=(2k)^2(2k+2)^2(4k^2+4k+2)^2(n^4+1)$
$=64[k(k+1)]^2(2k^2+2k+1)^2(n^4+1)$
Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên hiển nhiên chia hết cho 2
$\Rightarrow [k(k+1)]^2\vdots 4$
Với $n$ lẻ thì hiển nhiên $n^4+1\vdots 2$
$\Rightarrow A\vdots 64.4.2=512$ (đpcm)
Đặt \(A=n^4-10n^2+9\)
\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3
\(\Rightarrow A⋮3\)
Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Do n lẻ, đặt \(n=2k+1\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8
\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)
Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)