K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^n.5=3^{10}.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10\)

\(=\left(3^n-2^{n-1}\right).10\)chia hết cho 10

26 tháng 7 2016

Đặt D=3^n+2 - 2^n+2 + 3^n + 2^n

=(3^n+2 + 3^n) - (2^n+2 + 2^n)

=(3^n . 3^2 + 3^n) - (2^n . 2^2 + 2 ^n)

=3^n . (3^2 + 1) - 2^n . (2^2 + 1)

=3^n . 10 - 2 ^n .5

=3^n .10 - 2^n-1 .10

=(3^n - 2^n-1) . 10 chia hết cho 10 (ĐPCM)

Chúc bạn học tốt!

6 tháng 8 2021

3n+2 -2n+2 +3n -2n

=3.32 -2n .22 +3n -22

=3n(9+)-2n(4-1)

Vì 3n .10 ⋮10

=> 3n .10- 2n .3⋮10

=>3n +2 -2n+2 +3n -2n ⋮10

4 tháng 11 2021

sai

trước 2^n là dấu trừ => trong ngoặc đổi dấu thành 2^n(4+1)

=>2^n-1.10 chia hết cho 10

 

6 tháng 2 2021

Đây nè bạn

2 tháng 4 2021

=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10

=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10

6 tháng 2 2022

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\) ∀n∈N

Vậy ...

6 tháng 2 2022

Tham khảo

29 tháng 10 2017

=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)

=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)\(2^n\)

=10 .\(3^n\)-5.\(2^n\)

=10.\(3^n\)-5.2.\(2^{n-1}\)

=10 .(\(3^n\)-\(2^n\) )

=> chia hết cho 10

29 tháng 10 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)

22 tháng 7 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

Thấy: \(3^{n+2}+3^n=3^n.2^2+3^n=9.3^n+3^n=3^n.\left(9+1\right)=3^n.10\)

\(\Rightarrow3^{n+2}+3^n⋮10\)\(\left(1\right)\)

\(2^{n+2}+2^n=4.2^n+2^n==2^n\left(4+1\right)=2^n.5=2.2^{n-1}.5=10.2^{n-1}\)

\(\Rightarrow2^{n+2}+2^n⋮10\)\(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3^{n+2}+2^n-\left(2^{n+2}+2^n\right)⋮10\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)

k!

13 tháng 4 2015

32+n -22+n +3n -2n+3n-2n =32 .3n -22 .2n +3n -2n

                                            =9.3n -4.2n +3n -2n

                                            =(9.3n +3n) -4.2n -2n

                                            =3n (9+1) - (4.2n +2n)

                                 =3n .10 - 2n (4+1)

                                  =3n .10 - 2n .5

                        ; 2n chia hết cho 2; 5 chia hết ch3n .10 - 2n .5o 5 nên 2n .5 chia hết cho 10 và 3n .10 chia hết cho 10

nên 3n .10 - 2n .5 chia hết cho 10

 

13 tháng 1 2017

32+n -22+n +3n -2n+3n-2n =32 .3n -22 .2n +3n -2n

                                            =9.3n -4.2n +3n -2n

                                            =(9.3n +3n) -4.2n -2n

                                            =3n (9+1) - (4.2n +2n)

                                 =3n .10 - 2n (4+1)

                                  =3n .10 - 2n .5

                        ; 2n chia hết cho 2; 5 chia hết ch3n .10 - 2n .5o 5 nên 2n .5 chia hết cho 10 và 3n .10 chia hết cho 10

nên 3n .10 - 2n .5 chia hết cho 10

29 tháng 3 2016

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 
Suy ra S chia hết cho 10.