Cho đường tròn tâm O bán kính 3 cm và điểm A cách O 1 khoảng 5 cm. Kẻ các tiếp tuyến AB,AC với đường tròn(B,C là tiếp điểm). Gọi H là giao điểm của AO và BC
a) cm AO vuông góc BC ( làm rồi )
b) tính OH
c) qua M lấy bất kì thuộc cung nhỏ BC. kẻ tiếp tuyến với đ tròn cắt AC và AB tại D và E. VC tam giác ADE?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giácc ABOC có
góc OBA+góc OCA=180 độ
nen ABOC là tứ giác nội tiếp
b: Xét ΔCAO vuông tại C và ΔCDE vuông tại C có
góc CAO=góc CDE
Do đó: ΔCAO đồng dạng vơi ΔCDE
=>CA/CD=CO/CE
=>CA/CO=CD/CE
Xét ΔCAD và ΔCOE có
CA/CO=CD/CE
góc ACD=góc OCE
Do đo: ΔCAD đồng dạng với ΔCOE
a: góc ABO+góc ACO=90+90=180 độ
=>ABOC nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
Bán kính là OA/2
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AO vuông góc BC
c: Xét ΔAMB và ΔABN có
góc AMB=góc ABN
góc MAB chung
=>ΔAMB đồng dạng với ΔABN
=>AM/AB=AB/AN
=>AB^2=AM*AN=AH*AO
Vì cậu làm câu a) rồi nên mình chỉ làm 2 câu còn lại thôi nhá (:
a. Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra \(\Delta ABC\)cân tại A.
AO là tia phân giác của góc BAC (tính chất hai tiếp tuyến cắt nhau)
Suy ra AO là đường cao của tam giác ABC (tính chất tam giác cân)
Ta có: AO vuông góc với BC tại H
Lại có: \(AB\perp OB\)( tính chất tiếp tuyến )
Tam giác ABO vuông tại B có \(BH\perp AO\)
Theo hệ thức lượng trong tam giác vuông, ta có:
\(OB^2=OH.OA\Rightarrow OH=\frac{OB^2}{OA}=\frac{32}{5}=1,8\left(cm\right)\)
b. Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:
AO2 = AB2 + BO2
Suy ra: AB2 = AO2 – BO2 = 52 – 32 = 16
AB = 4 (cm)
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
DB = DM
EM = EC
Chu vi của tam giác ADE bằng:
AD + DE + EA = AD + DB + AE + EC
= AB + AC = 2AB = 2 . 4 = 8 ( cm )