1. Cho x=99. Tính giá trị biểu thức: x2+3x2+3x
2. Cho x+y=101. Tính giá trị biểu thức:
x^3 - 3x^2 + 3x^2y + 3xy^2 + y^2 - 3y^2 - 6xy + 3x + 3y + 2012
Làm giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+3\left(x+y\right)-3\left(x^2+2xy+y^2\right)+2016\)
\(=\left(x+y\right)^3+3\left(x+y\right)-3\left(x+y\right)^2+2016\)
\(=21^3+3.21-3.21^2+2016\)
\(=\left(21-1\right)^3+2017=8000+2017=10017\)
Mình không viết lại đề nha ~
\(E=\left(x^3+3xy^2+3x^2y+y^3\right)+\left(3y+3x\right)+\left(3x^2+6xy+3y^2\right)+2016\)
\(E=\left(x+y\right)^3+3\left(x+y\right)+3\left(x+y\right)^2+2016\)
\(E=\left(x+y\right)[\left(x+y\right)^2+3+\left(x+y\right)]+2016\)
\(E=21\left(21^2+3+21\right)+2016\)
\(E=21.465+2016\)
\(E=9765+2016=11781\)
a: \(M=x^3+x^2-y^3+y^2+xy-3xy-95\)
\(=\left(x-y\right)^3+\left(x-y\right)^2-95\)
\(=7^3+7^2-95=297\)
b: \(N=3\left[\left(x+y\right)^2-2xy\right]-2\left(x+y\right)+6xy-100\)
\(=3\cdot\left(25-2xy\right)-10+6xy-100\)
=75-6xy-10+6xy-100
=-35
a)x3 + 3x2 + 3x
=x3 + 3x2 + 3x+1-1
=(x+1)3-1.Với x=99
=>A=(99+1)3-1=1003-1
=1 000 000 -1 = 999 999
\(P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2017\)
\(=\left(x+y-1\right)^3+2018\)
\(=100^3+2018\)
\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)
\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)
\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)
\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)
\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)
\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)
\(\Leftrightarrow P=x^3+3x^2y+3xy^2+y^3-3x^2-6xy-3y^2+3x+3y+2015\)
\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)
\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)
\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)
\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)
\(\Leftrightarrow P=1030301-30603+303+2015\)
\(\Leftrightarrow P=999698+303+2015\)
\(\Leftrightarrow P=1000001+2015\)
\(\Leftrightarrow P=1002016\)