Cho tam giác ABC nhọn có hai đường cao AH và BD cắt nhau ở I . Góc BIC kề bù với gó nào ? Chứng minh góc BIC bù với góc A
VẼ HÌNH GIÙM MÌNH NHÁ CÁC BẠN !!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Cách 1: Do điểm I nằm trong tam giác ABC nên: IBC<ABC và ICB<ACB
Cộng vế theo vế của chúng ta suy ra ABC+ACB>IBC+ICB
Do đó: 180-(ABC+ACB)<180-(IBC+ICB)
Tức là BAC<BIC và cũng là điều phải chứng minh
Cách 2:
Gọi D là giao điểm của BI với AC
Do BIC là góc ngoài của tam giác ICD nên BIC>BDC
Đồng thời BDC cũng là góc ngoài của tam giác ABD nên BDC >BAC
Do vậy BIC>BAC cũng là điều phải chứng minh
Bài 2
a)
Do BIC=180-IBC-ICB=180-1/2(B+C)=90+A nên BIC luôn lớn hơn 90
Mà BIC+CID=180=>CID=180-BIC<180-90=90
Thế nên CID là góc nhọn
b)
Từ giả thiết góc DIC=60 ta suy ra BIC=120=>IBC+ICB=60=>1/2(B+C)=60
Ta có:BEC+BDC=180-B-1/2C+180-C-1/2B
=360-(B+C)-1/2(B+C)
=360-120-60=180
Do vậy 2 góc BEC và BDC bù nhau
Qua F kẻ FO vg vs EC ( O thuộc EC).gọi G là giao điểm của BD và EF.
ta có: ^BAC+^ABC+^ACB=180(t/c tổng 3 góc trong tg)=> ^ABC+^ACB=120(vì ^BAC =60)
=> 2.^DBC+2.^ECB=120(vì BC là pg của ^B và CE là pg của ^C)=> ^DBC+^CEB=60 hay ^IBC+^ICB=60
xét tg IBC có: ^IBC+^ICB+^BIC=180(t/c tổng 3 góc trong tg) => ^BIC=120(vì ^IBC+^ICB=60) hay ^GIO=120
xét tg GFOI có: ^IGF+^GFO+^FOI+^OIG=360( t/c tổng các góc trong tg)
=> ^GFO=60(vì ^GIO=120; ^IGF=90; ^FOI=90)=> ^OEF=90-60=30 độ
xét tg OEF vuông tai O(cách vẽ) có: OF đối diên vs ^OEF, mà ^OEF=30 độ nên OF=1/2.EF
Mặt khác : GF=1/2.EF(tự c/m) nên OF=GF
Ta có: F nằm trong ^ BIC ; FG vg vs BI và FO vg vs IC (cách vẽ) ; OF=OG(cmt)
=> IF là tia pg của ^BIC( t/c của tia pg)
câu b bám vào câu a để làm. chỉ cần c/m IC là đg trung trwch của DF là đc
mình ko biết vẽ à nhưng mình giải được cau hoi nay đó