K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

40 nha

21 tháng 3 2022

20 + 20 = 40 

30 tháng 12 2015

=>S=1+1+1+...+1 (19 số 1)

=>S=19

Tick nha vì mình đang cần

30 tháng 12 2015

mik đang tính đừng làm phiền

23 tháng 7 2017

20 x 15=300

23 tháng 7 2017

300nha bn

tk mk nha

24 tháng 4 2016

lớp 5 cũng làm đc

17 tháng 7 2018

23 + 2 + 1 = 26     40 + 20 + 1 = 61     90 - 60 - 20 = 10

\(=\left(\dfrac{11}{10}+\dfrac{7}{10}+\dfrac{1}{10}\right)+\left(\dfrac{17}{20}+\dfrac{9}{20}+\dfrac{3}{20}\right)\\ =\dfrac{19}{10}+\dfrac{29}{20}=\dfrac{19\times2}{10\times2}+\dfrac{29}{20}=\dfrac{38}{20}+\dfrac{29}{20}\\ =\dfrac{47}{20}\)

15 tháng 2 2022

\(H=\left(\dfrac{11}{10}+\dfrac{7}{10}+\dfrac{1}{10}\right)+\left(\dfrac{17}{20}+\dfrac{9}{20}+\dfrac{3}{20}\right)\)

\(H=\dfrac{19}{10}+\dfrac{29}{20}\)

\(H=\dfrac{67}{20}\)

9 tháng 8 2020

a) Đặt A = 1 + 2 + 22 + ... + 22008 (1)

=> 2A = 2 + 22 + 23 + ... + 22009 (2)

Lấy (2) trừ (1) theo vế ta có : 

2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)

       A = 22009 - 1

Khi đó B = \(\frac{2^{2009}-1}{1-2^{2009}}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}\)

=> A - 1 = \(\frac{20^{10}+1-20^{10}+1}{20^{10}}=\frac{2}{20^{10}}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}\)

=> B - 1 = \(\frac{20^{10}-1-20^{10}+3}{20^{10}-3}=\frac{2}{2^{10}-3}\)

Vì \(\frac{2}{2^{10}}< \frac{2}{2^{10}-3}\)

=> A - 1 < B - 1

=> A < B

9 tháng 8 2020

a) \(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)

Đặt \(Q=1+2+2^2+...+2^{2008}\)

\(2Q=2+2^2+2^3+...+2^{2009}\)

\(2Q-Q=2+2^2+2^3+...+2^{2009}-1-2-2^2-...-2^{2008}\)

\(\Rightarrow Q=2^{2009}-1\)

Ta thấy \(Q\) là số đối của \(2^{2009}-1\)

\(\Rightarrow B=-1\)

Vậy \(B=-1\).

b) Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Ta lại có: \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\) nên \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

\(\Rightarrow A< B\)

Vậy \(A< B\).