K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Đặt \(M=a^4+4b^4\)

Ta có : \(M=a^4+4b^4=\left(a^4+2.a^2.2b^2+4b^4\right)-4a^2b^2=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)

\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)

Vì M là số nguyên tố nên chỉ có các trường hợp : 

1. \(\hept{\begin{cases}a^2-2ab+2b^2=1\\a^2+2ab+b^2=a^4+4b^4\end{cases}}\)

2. \(\hept{\begin{cases}a^2-2ab+2b^2=a^4+4b^4\\a^2+2ab+2b^2=1\end{cases}}\)

Bạn hãy giải từng trường hợp.

24 tháng 7 2016

thanks bn a

2 tháng 11 2016

Thế này bạn nhé!!

ta có: a4+4b4=(a2+2b2)2−4a2b2=(a2+2b2+2ab)(a2+2b2−2ab)a4+4b4=(a2+2b2)2−4a2b2=(a2+2b2+2ab)(a2+2b2−2ab)

Vì a4+4b4 là số nguyên tố nên một trong hai nhân tử bên trên phải có một nhân tử bằng 1, một nhân tử là số nguyên tố.

Đến đây dễ rồi!!! k nhé

29 tháng 10 2017

1:đáp án là 3

2:đáp án lần lượt là

x = 5

a = 3

b = 4

24 tháng 2 2020

Ta có : \(D=4x^4+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)

Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)

Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Thử lại ta có \(D=1\) không là số nguyên tố

Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.

4 tháng 7 2017

4a+11 la so ngto suy ra 4a+11 la so le

suy ra 4a la so chan

Vi 4a+11 < 30 suy ra 4a < 19 suy ra a co the = 1,2,3,4

Ma 4a+11 la so ngto suy ra a=2