tính nhanh
. là dấu nhân
\(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+\frac{2}{17.19}+\frac{2}{19.21}\right)\) ) . 462 - x = 19
\(\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\) . 462 - x = 19
\(\left(\frac{1}{11}-\frac{1}{21}\right)\) . 462 - x = 19
... Chúc bạn học tốt !
\(\left(\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+\frac{2}{15\cdot17}+\frac{2}{17\cdot19}+\frac{2}{19\cdot21}\right)\)\(\cdot462-x=19\)
\(\left(\frac{1}{11\cdot13}+\frac{1}{13\cdot15}+\frac{1}{15\cdot17}+\frac{1}{17\cdot19}+\frac{1}{19\cdot21}\right)\)\(\cdot462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{21}\right)\)\(\cdot462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{21}\right)\cdot462-x=19\)
\(\frac{10}{231}\cdot462-x=19\)
\(20-x=19\)
\(x=20-19\)
\(x=1\)
\(M=\frac{3}{2}.\left(\frac{2}{11.13}+\frac{2}{13.15}+......+\frac{2}{97.99}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+.....+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{11}-\frac{1}{99}\right)=\frac{3}{2}.\frac{8}{99}=\frac{4}{33}\)
M= \(\frac{3}{11\cdot13}+\frac{3}{13\cdot15}+\frac{3}{15\cdot17}+...+\frac{3}{97\cdot99}\)
=\(\frac{3}{2}\cdot\left(\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+\frac{2}{15\cdot17}+...+\frac{2}{97\cdot99}\right)\)
=\(\frac{3}{2}\cdot\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{97}-\frac{1}{99}\right)\)
=\(\frac{3}{2}\cdot\left(\frac{1}{11}-\frac{1}{99}\right)\)
=\(\frac{3}{2}\cdot\frac{8}{99}\)
= \(\frac{4}{33}\)
-Nếu |x-2013|-2014=2015->|x-2013| = 4029
+ Nếu x-2013 =4029 -> x= 6042
+ Nếu x-2013 = -4029 -> x = -2016
- Nếu |x-2013|-2014= -2015 -> |x-2013| = -1 (loại vì |x-2013| \(\ge\)0 )
Vậy x= 6042 ; x=-2016 là các giá trị cần tìm.
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
=> \(x-\left(20\times\frac{1}{11.13}+20\times\frac{1}{13.15}+20\times\frac{1}{15.17}+...+20\times\frac{1}{53.55}\right)=\frac{3}{11}\)
\(x-20\times\left(\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+...+\frac{1}{53.55}\right)=\frac{3}{11}\)
\(x-20\times\left(\frac{1}{2}\times\left(\frac{1}{11}-\frac{1}{13}\right)+\frac{1}{2}\times\left(\frac{1}{13}-\frac{1}{15}\right)+\frac{1}{2}\times\times+...+\frac{1}{2}\times\left(\frac{1}{53}-\frac{1}{55}\right)\right)=\frac{3}{11}\)
\(x-20\times\frac{1}{2}\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-...-\frac{1}{53}+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\times\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\times\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{10}{11}=\frac{3}{11}\)
=> \(x=\frac{3}{11}+\frac{10}{11}=\frac{13}{11}\)
Vậy x=\(\frac{13}{11}\)
Gọi dãy trên là A
\(\Leftrightarrow2A=\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{19\cdot21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{21}+0+...+0\)
\(\Leftrightarrow2A=\frac{10}{231}\)
\(\Leftrightarrow A=\frac{5}{231}\)
\(x-\frac{20}{11\cdot13}-\frac{20}{13\cdot15}-\frac{20}{15\cdot17}-......-\frac{20}{53\cdot55}=\frac{3}{11}\)
\(\Leftrightarrow x-10\left(\frac{2}{11\cdot13}-\frac{2}{13\cdot15}-\frac{2}{15\cdot17}-.....-\frac{2}{53\cdot55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+....+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Rightarrow x=1\)
\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(x-10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x=1\)
mình đoán là 2
\(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}\)
\(=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{11}-\frac{1}{99}\)
\(=\frac{9}{99}-\frac{1}{99}=\frac{8}{99}\)