ngày THI ĐẤU OLM tối nay, ngày 28/04/2023 để so tài với học sinh toàn quốc!!!
Ôn tập kiểm tra học kì 2 hiệu quả, đạt thành tích cao!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính các tổng sau:
a) S1 = 1+a2+a4+a6+....+a2n, với ( a > hoặc = 2, n thuộc N)
b) S2 = a+a3+a5+.......+a2n+1, với (a > hoặc = 2, n thuộc N*)
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)
Cho 2n số nguyên dương a1, a2, a3,......, a2n-1, a2n thỏa mãn:
a12 + a32 + a52 + ..... + a2n-12 = a22 + a42 + a562 + ..... + a2n2
Chứng minh rằng a1 + a2 + a3 + ...... + a2n-1 + a2n là hợp số (n \(\in\) N*)
Cho số nguyên n ≥ 3 . Giả sử ta có khai triển
x - 1 2 n + x x + 1 2 n - 1 = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n . Biết rằng tổng a + a 2 + . . . + a 2 n - 2 + a 2 n = 768 . Tính a 5
A. 294
B. -126
C. 378
D. -84
Cho số nguyên n ≥ 3 . Khai triển:
x − 1 2 n + x x + 1 2 n − 1 = a 0 + a 1 x + a 2 x 2 + ... + a 2 n x 2 n Biết rằng tổng a 0 + a 2 + ... + a 2 n − 2 + a 2 n = 768 . Tính a 5 .
Đáp án là B
x − 1 2 n + x x + 1 2 n − 1 = a 0 + a 1 x + a 2 x 2 + ... + a 2 n x 2 n . Biết rằng tổng a 0 + a 2 + ... + a 2 n − 2 + a 2 n = 768. Tính a 5 .
A. a 5 = 294.
B. a 5 = − 126.
C. a 5 = 378.
D. a 5 = − 84.
Đáp án B.
Cho khai triển 1 + x + x 2 = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n với n ≥ 2 và a 0 , a 1 , a 2 , . . . , a 2 n là các hệ số. Tính tổng S = a 0 + a 1 + a 2 + . . . + a 2 n biết a 3 14 = a 4 41
A. S = 3 10
B. S = 3 12
C. S = 2 10
D. S = 2 12
Cho khai triển 1 + x + x 2 n = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n với n ≥ 2 và a 0 , a 1 , a 2 , . . . , a 2 n là các hệ số. Tính tổng S = a 0 + a 1 + a 2 + . . . + a 2 n biết a 3 14 = a 14 41
A. 3 10
B. 3 12
C. 2 10
D. 2 12
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)