K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`

`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`

`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`

`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)

`<=>x=2014`

Vậy `S={2014}`.

=>x-2014=0

hay x=2014

23 tháng 1 2022

giải rõ ra được không? 

17 tháng 3 2023

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2013}-1\right)+\left(\dfrac{x-2}{2012}-1\right)+\left(\dfrac{x-3}{2011}-1\right)=\left(\dfrac{x-4}{2010}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\Leftrightarrow\left(x-2014\right).A=0\)

\(\text{Vì A }\ne0\)

\(\Rightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{2014\right\}\)

 

6 tháng 3 2017

Bài của bạn nè bạn gái!

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{1012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{10}{2008}\ne0\)

\(\Rightarrow x-2014=0\Rightarrow x=2014\)

vậy x=2014

6 tháng 3 2017

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}+1+\dfrac{x-2}{2012}+1+\dfrac{x-3}{2011}+1-\dfrac{x-4}{2010}+1-\dfrac{x-5}{2009}+1-\dfrac{x-6}{2008}+1=0\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

Vậy PT có nghiệm là \(x=2014\)

3 tháng 4 2018

\(x+2x+3x+...+2011x=2012.1013\)

\(\dfrac{2011\left(2011+1\right)}{2}x=2012.2013\)

\(x=2012.2013.\dfrac{2}{2011.2012}\)

\(x=\dfrac{4026}{2011}\)

3 tháng 4 2018

b thì chịu

5 tháng 4 2018

đề sai?

26 tháng 3 2018

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

<=>\(\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

<=>\(\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}=\dfrac{x-2014}{2010}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2008}\)

<=>\(\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

vì 1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 khác 0

=>x-2014=0<=>x=2014

bạn hiểu chứ?

26 tháng 3 2018

Xuyên Cúc: -1 tại vì còn phải tùy bài, mk phải làm thế nào để tử giống nhau, thì có trường hợp + có trường hợp -, cái đấy còn tùy

còn 1/2013...+... khác 0 vì chắc chắn nó sẽ khác 0, cái dãy số đấy k có chuyện bằng 0 đc , tớ cũng chả biết giải thích thế nào nữa == bt nếu làm ra như vầy : (x+1)(1/2+...+..) thì x+1=0 còn cái vế còn lại sẽ khác 0, hầu như là thế chứ tớ chưa thấy trường hợp nào mà vế x+1 khác 0 còn vế kia bằng 0 cả

5 tháng 7 2023

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)

\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

\(\left(x+2014\right)\times\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)

Vì \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\) 

=> \(x+2014=0\) 

                  \(x=0-2014\) 

                  \(x=-2014\)

23 tháng 12 2018

\(a.\dfrac{3x-2}{5}+\dfrac{x-1}{9}=\dfrac{14x-3}{15}-\dfrac{2x+1}{9}\\ \Leftrightarrow\dfrac{27x-18}{45}+\dfrac{5x-5}{45}=\dfrac{42x-9}{45}-\dfrac{10x+5}{45}\\ \Rightarrow27x-18+5x-5=42x-9-10x-5\\ \Leftrightarrow32x-23=32x-14\\ \Leftrightarrow0x=9\\ \Rightarrow Phươngtrìnhvônghiệm\\ \Rightarrow S=\phi\)

\(b.\dfrac{x+3}{2}-\dfrac{2-x}{3}-1=\dfrac{x+5}{6}\\ \Leftrightarrow\dfrac{3x-9}{6}-\dfrac{4-2x}{6}-\dfrac{6}{6}=\dfrac{x+5}{6}\\ \Rightarrow3x-9-4+2x-6=x+5\\ \Leftrightarrow5x-19=x+5\\ \Leftrightarrow4x=24\\ \Rightarrow x=6\\ \Rightarrow S=\left\{6\right\}\)

4 tháng 1 2019

\(c.\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}=-4\\ \Leftrightarrow\dfrac{x+5}{2010}+1+\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1+\dfrac{x+2}{2013}+1=-4+4\\ \Rightarrow\dfrac{2015+x}{2010}+\dfrac{2015+x}{2011}+\dfrac{2015+x}{2012}+\dfrac{2015+x}{2013}=0\\ \Leftrightarrow\left(2015+x\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)=0\)

Do \(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}>0\)

nên \(2015+x=0\Rightarrow x=-2015\)

Câu d tương tự...thêm rồi chuyển vế sang :v

21 tháng 3 2023

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

`=> (x+2014) (1/2010 + 1/2011-1/2012-1/2013)=0`

`=> x+2014=0` ( vì `1/2010 + 1/2011-1/2012-1/2013≠0 )`

`=>x=-2014`