Chứng minh rằng trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm được 2 số sao cho tổng của chúng chia hết cho 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số tự nhiên đó là a, b, c
Ta thấy có 3 số mà chỉ có loại đó là chẵn và lẻ
=> trong 3 số a, b, c phải có 2 số cùng tính chẵn lẻ
=> tổng của chúng chia hết cho 2
khi chia mot so tu nhien cho 5,so du co the la 1,2,3,4
suy ra:khi chia bat ki 6 so tu nhien cho 5,so du bang 1 trong 5 so tu 0 den 4
suy ra:co 2 trong 6 so do chia cho 5 co cung so du
suy ra;hieu cua chung chia het cho 5
Đề sai nha bạn. Vì là 6 số tự nhiên bất kỳ nên mình cho ví dụ này nhé: 1;3;5;7;9;11. Trong 6 số trên không có hiệu 2 số nào chia hết cho 5. Phải là 6 số tự nhiên liên tiếp mới được nha bạn.
Cái này sai nha bạn, liên tiếp thì được chứ bất kỳ thì không được. Ví dụ: cho 6 số đó là : 1 ; 3 ; 5 ; 7 ; 9 ; 11.
Không có cặp số nào có hiệu chia hết cho 5 nha bạn.
Gọi 3 số đó lần lượt là 2K;2K+1 và 2K+2
Theo đề bài ra ta có thì phải chứng minh trong 3 STN liên tiếp phải có tổng 2 số tự nhiên bất kì chia hết cho 2
Vậy ta có 3 TH là 2K+(2K+2) và 2K+2K+1 và (2K+2)+(2K+1)
Xét TH1: 2K+(2K+2)
Ta có: 2K+(2K+2)= (2K+2K)+2 =4K+2
Vì 4 chia hết cho và 2 chia hết cho 2 => 4K+2 chia hết cho 2
Xét TH2: 2K+(2K+1)
Ta có: 2K+(2K+1)= (2K+2K)+1= 4K+1
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 1 không chia hết cho 2
=> 4K+1 không chia hết cho 2
Xét TH3: (2K+2)+(2K+1)
Ta có: (2K+2)+(2K+1)= (2K+2K)+(1+2)= 4K+3
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 3 không chia hết cho 2
=> 4K+3 không chia hết cho 2
Từ 3 TH trên => trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm được 2 số sao cho tổng của chúng chia hết cho 2.
Giúp mk nha