Cho đoạn thẳng AB và điểm C nằm giữa A và B (C không trùng với trung điểm của AB). Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ hai tia Ax vuông góc với AB và By vuông góc với AB. Trên tia Ax lấy hai điểm M, M'; trên tia By lấy hai điểm N, N' sao cho AM = BC, BN = AC, AM' = AC, BN' = BC. Chứng minh rằng:
a) AN = BM', AN' = BM, MC = NC
b) MN' và M'N cắt nhau tại điểm O là trung điểm của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath
Xét tứ giác ABDC có
AC//BD
AC=BD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: DA=BC
a: Xét tứ giác ACBD có
AC//BD
AC=BD
Do đó: ACBD là hình bình hành
Suy ra: AD=BC
b: Ta có: ACBD là hình bình hành
nên AD//BC
c:
Ta có: CE+EB=CB
FD+AF=AD
mà CB=AD
và CE=FD
nên EB=AF
Xét tứ giác EBFA có
EB//AF
EB=AF
Do đó: EBFA là hình bình hành
Suy ra:EF và BA cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AB
nên O là trung điểm của FE
Tham khảo:
Kí hiệu tam giác vt là t/g nhé
a) Xét t/g AOC và t/g BOD có:
OA = OB (gt)
CAO = DBO (gt)
AC = BD (gt)
Do đó, t/g AOC = t/g BOD (c.g.c)
=> OC = OD (2 cạnh tương ứng) (1)
Tương tự ta cũng có t/g AOE = t/g BOF (c.g.c)
=> OE = OF (2 cạnh tương ứng) (2)
(1) và (2) là đpcm
b) t/g AOC = t/g BOD (câu a)
=> AOC = BOD (2 góc tương ứng)
Mà AOC + COB = 180o ( kề bù)
nên BOD + COB = 180o
=> COD = 180o
=> C,O,D thẳng hàng
trường hợp c` lại tương tự
c) Có: AC = BD (gt); AE = BF (gt)
=> AE - AC = BF - BD ( vì hình của mk AE > AC c` nếu hình bn vẽ AC > AE thì ngược lại)
=> EC = FD
Vì BAx = ABy mà 2 góc này ở vị trí so le trong nên Ax // By
Xét t/g CEO và t/g DFO có:
CEO = DFO (so le trong)
EC = FD (cmt)
ECO = FDO (so le trong)
Do đó, t/g CEO = t/g DFO (g.c.g)
=> CO = DO (2 cạnh tương ứng)
EO = FO (2 cạnh tương ứng)
Từ đó dễ dàng suy ra t/g COF = t/g DOE (c.g.c)
=> CF = DE (2 cạnh tương ứng) (đpcm)
Tham khảo
Kí hiệu tam giác vt là t/g nhé
a) Xét t/g AOC và t/g BOD có:
OA = OB (gt)
CAO = DBO (gt)
AC = BD (gt)
Do đó, t/g AOC = t/g BOD (c.g.c)
=> OC = OD (2 cạnh tương ứng) (1)
Tương tự ta cũng có t/g AOE = t/g BOF (c.g.c)
=> OE = OF (2 cạnh tương ứng) (2)
(1) và (2) là đpcm
b) t/g AOC = t/g BOD (câu a)
=> AOC = BOD (2 góc tương ứng)
Mà AOC + COB = 180o ( kề bù)
nên BOD + COB = 180o
=> COD = 180o
=> C,O,D thẳng hàng
trường hợp c` lại tương tự
c) Có: AC = BD (gt); AE = BF (gt)
=> AE - AC = BF - BD ( vì hình của mk AE > AC c` nếu hình bn vẽ AC > AE thì ngược lại)
=> EC = FD
Vì BAx = ABy mà 2 góc này ở vị trí so le trong nên Ax // By
Xét t/g CEO và t/g DFO có:
CEO = DFO (so le trong)
EC = FD (cmt)
ECO = FDO (so le trong)
Do đó, t/g CEO = t/g DFO (g.c.g)
=> CO = DO (2 cạnh tương ứng)
EO = FO (2 cạnh tương ứng)
Từ đó dễ dàng suy ra t/g COF = t/g DOE (c.g.c)
=> CF = DE (2 cạnh tương ứng) (đpcm)
a: Xét tứ giác ACBD có
AC//BD
AC=BD
Do đó: ACBD là hình bình hành
Suy ra: Hai đường chéo AB và CD cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AB
nên O là trung điểm của CD
=>C,O,D thẳng hàng
b: Xét tứ giác AEBF có
AE//BF
AE=BF
Do đó: AEBF là hình bình hành
Suy ra: Hai đường chéo AB và FE cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AB
nên O là trung điểm của FE
hay F,O,E thẳng hàng
1: Xét tứ giác ACBD có
AC//BD
AC=BD
=>ACBD là hbh
=>O là trung điểm chung của AB và CD
2: Xét tứ giác AEBF có
AF//BE
AF=BE
=>AEBF là hbh
=>O là trung điểm của EF
Xét ΔCOA và ΔDOB :
CA=DB( gt)
∠CAO=∠DBO (gt)
AO=OB
=> ΔCOA=ΔDOB (c-g-c) => ∠AOC =∠BOD
Lại có ∠DOB + ∠BOC= ∠BOC +∠COA =∠AOB=1800
=> ∠DOC =1800=> C,O,D thẳng hàng
CMTT
=> ΔAEO =ΔBFO( c-g-c)
=>∠AOE=∠BOF
=> ∠EOF =∠AOP + ∠AOE= ∠AOF + ∠BOF =∠AOB=1800
=> E,O,F thẳng hàng
a)Vì BN=AC mà AC=AM'
=> BN=AM' (tính chất bắc cầu)
vì BN=AM', AB=AB
=>AN=BM'
Vì BN'=BC mà BC=AM
=>BN'=AM
Vì BN'=AM, AB=AB
=>AN'=BM
Vì BN=AC ,AM=BC
=>MC=NC
b) mình chịu
cảm ơn bạn Nguyễn Thành Danh nhiều nha