K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2015

A=3/2+13/12+31/30+...+9901/9900
= 1+1/2+1+1/12+1+1/30+...+1+1/9900
=1+1+1+...+1+1(50 cs)+1/2+1/12+1/30+...+1/9900
=50+1/2+1/12+1/30+...+1/9900
B=5/6+19/20+41/42+...+10099/10100
=(1-1/6)+(1-1/20)+(1-1/42)+...+(1-1/10100)
=1+1+...+1(50cs)-1/6-1/20-1/42-...-1/10100
A-B=(50+1/2+1/12+1/30+...+1/9900)-(50-1/6-1/20-1/42-...-1/10100)
=1/2+1/6+1/12+1/20+...+1/9900+1/10100
=1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101
=1-1/2+1/2-1/3+1/3-1/4+1/4-...+1/99-1/100+1/100-1/101
=1-1/101
=100/101

19 tháng 4 2018

cách bạn làm hay đấy

\(A=\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+...+\frac{9901}{9900}=\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+\left(1+\frac{1}{4.5}\right)+...+\left(1+\frac{1}{99.100}\right)\)\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=98+\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=98+\frac{49}{100}=98\frac{49}{100}\)

24 tháng 5 2017

Ta có:

\(A=\frac{3}{2}+\frac{13}{12}+\frac{31}{30}+\frac{57}{56}+\frac{91}{90}\)

\(=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{90}\right)\)

\(=\left(1+1+1+1+1\right)+\left(\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)\)

\(=5+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\)

\(B=\frac{5}{6}+\frac{19}{20}+\frac{41}{42}+\frac{71}{72}+\frac{109}{110}\)

\(=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{110}\right)\)

\(=\left(1+1+1+1+1\right)-\left(\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\right)\)

\(=5-\left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\right)\)

=> A - B =\(\left[5+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\right]-\left[5-\left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\right)\right]\)

\(5+\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}-5+\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(1-\frac{1}{11}\)

\(\frac{10}{11}\)

24 tháng 5 2017

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{90}\right)\)

\(B=\left(1-\frac{1}{6}\right)+\left(1-\frac{19}{20}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{110}\right)\)

Mk gợi ý đến đây thôi , mk bí rồi đợi mk nghĩ đã!

12 tháng 8 2019

\(A=\frac{3}{2}-\frac{5}{6}+\frac{13}{12}-\frac{19}{20}+\frac{31}{30}-\frac{41}{42}+\frac{57}{56}-\frac{71}{72}+\frac{91}{90}-\frac{109}{110}\)

\(\Rightarrow A=\left(1+\frac{1}{2}\right)-\left(1-\frac{1}{6}\right)+\cdot\cdot\cdot+\left(1+\frac{1}{90}\right)-\left(1-\frac{1}{110}\right)\)

\(\Rightarrow A=1+\frac{1}{2}-1+\frac{1}{6}+\cdot\cdot\cdot+1+\frac{1}{90}-1+\frac{1}{110}\)

\(\Rightarrow A=\left[\left(1-1\right)+\frac{1}{2}+\frac{1}{6}\right]+\cdot\cdot\cdot+\left[\left(1-1\right)+\frac{1}{90}+\frac{1}{110}\right]\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{90}+\frac{1}{110}\)

\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow A=1-\frac{1}{11}\)

\(\Rightarrow A=\frac{10}{11}\)

2 tháng 9 2020

Mấy câu như này tách ra kiểu gì?

2 tháng 9 2020

\(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}=\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{99.100}\)

\(5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(5\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{97}{60}\)

22 tháng 4 2018

đề bài đâu mà tính

22 tháng 4 2018

đề đâu