K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
21 tháng 3 2022

Xét phương trình hoành độ giao điểm 

\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)

để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu

khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)

24 tháng 3 2022

- Xét pt hoành độ gd....:

x2-(m-1)x-m-4=0 (1)

- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau

\(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)

Vậy với m>-4 thì ....

20 tháng 11 2017

Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1

↔ x 2 − (m + 2)x + m + 1 = 0 (1)

(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0

↔ m < −1

Vậy m < −1

Đáp án: A

NV
7 tháng 7 2021

Pt hoành độ giao điểm:

\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)

d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)

\(\Leftrightarrow m< 1\)

10 tháng 6 2023

Vì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung  nên phương trình sẽ có 2 nghiệm trái dấu

PT có 2 nghiệm trái dấu thì \(\left\{{}\begin{matrix}\Delta'>0\\P< 0\end{matrix}\right.\)

PT hoành độ giao điểm giữa ( P ) và ( d ) là \(x^2-2x+m-9=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(m-9\right)>0\\P=m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-m+10>0\\m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< 10\\m< 9\end{matrix}\right.\\ \Leftrightarrow m< 9\)

Vậy m < 9 thì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung

16 tháng 12 2017

Đáp án C

7 tháng 6 2017

Đáp án C

NV
18 tháng 3 2021

Pt hoành độ giao điểm: 

\(x^2=2x+m\Leftrightarrow x^2-2x-m=0\) (1)

(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow-m< 0\Rightarrow m>0\)

26 tháng 3 2022

1, Do hàm số trên cắt trục hoành tại điểm có hoành độ bằng 3 hay hàm số trên đi qua A(3;0) 

<=> \(0=6+b\Leftrightarrow b=-6\)

2, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-1\right)x-m+4=0\)

Để (P) cắt (d) tại 2 điểm pb nằm về 2 phía trục tung khi pt có 2 nghiệm trái dấu hay 

\(x_1x_2=-m+4< 0\Leftrightarrow-m< -4\Leftrightarrow m>4\)

20 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2-2x-3=x-m\)

\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu

\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)

Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)

\(x^2_2=16x^2_1\)

\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)

\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)

\(\Leftrightarrow15x_1^2+6x_1-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)

Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)

Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)

Vậy \(m=\dfrac{111}{25}\)