K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

để A có giá trị bằng 1

suy ra 3 phải chia hết cho n-1

suy ra n-1 \(\in\)Ư(3)={1,3 }

TH1 n-1=1\(\Rightarrow\)n=1+1=2

TH2 n-1=3\(\Rightarrow\)n=3+1=4

Vậy n = 2 hoặc n =4

11 tháng 4 2017

 a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1   suy ra n-1=3

                                                                                     n=4

b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương

              từ trên suy ra n-1=1 hoặc 3

    nếu n-1=1 suy ra n =2   3/n-1=3 là snt

    nếu n-1=3  suy ra 3/n-1=3/3=1 loại vì ko là snt                                     

15 tháng 10 2021

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

15 tháng 10 2021

còn 1 câu nữa ạ:((

4 tháng 1 2016

a. A=1000-|x+5| < 1000

=> GTLN của A là 1000

<=> x + 5 = 0

<=> x = -5

b. B = |x-3| + 5 > 5

=> GTNN của B là 5

<=> x - 3 = 0

<=> x = 3

4 tháng 1 2016

a, x= -5

b, x= -3

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho