Cho A = 3+3^2 +3^3+...+3^2004
a)Tính tổng A
b)Chứng minh rằng A chia hết cho 130
c)A có là số chính phương ko? Tại sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có
A = 3 + 32 + ... + 32004.
=> A = 3 ( 1+ 3 + 32 ) + 34 ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )
=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13
=> A = 13 ( 3 + 34 + ... + 32001) chia hết cho 13.
Lại có :
A = 3 + 32 + ... + 32004.
=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)
=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)
=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.
Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1
=> A chia hết cho 130.
A=3+32+33+......+32004
3A=32+33+......+32005
3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )
2A=32005-3
A=\(\frac{3^{2005}-3}{2}\)
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0
(2k+1) 2k (2k-1)
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương
Mình ko chắc đã đúng đâu
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
câu a, b trên mạng có nha
c) do 3 +3^2+3^3+..+3^2004 chia hết cho 3
mà 3 ko chia hết cho 3^2 , 3^2 chia hét cho 3^2 ,.., 3^2004 chia hết cho 3^2 => a ko chia hết cho 3^2
=> a ko là scp ( do scp chie hết cho 3 , ko chia hết cho 3^2 , 3 nguyên tố)