Cho hình bình hành ABCD.M,N lần lượt là trung điểm của AB và CD. Gọi P,Q theo thứ tự là giao điểm của AN và CM với đường chéo BD. Chứng minh: DP=PQ=QB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#Tự vẽ hình nhé bạn#
a) Vì AB // CD nên AM // NC ( 1 )
Ta có : AM = 1 / 2 AB( vì M là trung điểm AB )
NC = 1 / 2 CD ( vì N là trung điểm CD )
Mà AB = CD ( vì ◇ABCD là hình bình hành )
\(\Rightarrow\)AM = NC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)◇AMNC là hình bình hành
b) Xét \(\Delta\)DQC có :
- N là trung điểm CD
- PN // QC ( vì AN // MC )
\(\Rightarrow\)P là trung điểm DQ
\(\Rightarrow\)PD = PQ ( 3 )
Xét \(\Delta\)ABP có :
- M là trung điểm AB
- AP // MQ ( vì AN // MC )
\(\Rightarrow\)Q là trung điểm BP
\(\Rightarrow\)BQ = PQ ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)DP = PQ = QB
Gọi o là tâm của hình bình hành.
Ta cóF;E là trọng tâm của tam giác ABC và ADC(vì AN:AM:AO;BO trung tuyến)
OE=\(\frac{OB}{3}\) và OF=\(\frac{OD}{3}\)
Vậy OE=OF(vì OB=OD) và FE=2OE=2FO(1)
F là trọng tâm của tam giác ADC nên \(\frac{FO}{FD}\)=\(\frac{1}{2}\)nên FD=2FO(2)
E là trọng tâm tam giác ABC nên \(\frac{EO}{EB}\)=\(\frac{1}{2}\)nên EB=2OE(3)
Từ(1)(2)(3) suy ra FE=FD=BE
a) AK=1/2AB; CI=1/2CD
mà AB//=CD nên AK//=CI suy ra
AKCI là hình bình hành
do đó AI//CK
b) Xét tam giác CDN
có I là trung điểm CD mà IM//CN
nên M là trung điểm DN hay DM=MN (3)
(Theo định lý đường thẳng đi qua một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba)
Tương tự xét tam giác ABM cũng có BN=MN (4)
Từ (3) và (4) suy ra DM=MN=NB