Cho phương trình \(\frac{x-1}{x-m}-\frac{x+2}{x+m}=0\). Tìm m để phương trình trên có nghiệm là nguyên dương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-m}{x-2}-\frac{x+m}{x+1}\)
\(=\frac{x^2+x-mx-m-x^2+2x+mx-2m}{\left(x-2\right)\left(x+1\right)}\)
\(=\frac{3\left(x-m\right)}{\left(x-2\right)\left(x+1\right)}\)
vậy ...........
lo hbfbekef evef
frgrgthtgr
t
gr
grgrgrgfrgrf
r
g
rg
r
g
r
gr
f
r
r
br
g
r
gr
gr
grg
r
g
eh
h
h
t
tt
t
t
thr
htr
htht
rh
ththt
ht
ht
h
h
ht
ht
ht
h
frorgew
rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f
v
r
re
eb
tg
bet
eb
Điều kiện xác định: x# 2;x #- -2
Quy đồng => x-mx=2m-14
Với m=1 => phương trình vô nghiệm
Với m#1 => (2m-14)/(1-m) #2 => m#4
(2m-14)/(1-m) # _2 ( luôn đúng)
(2m-14)/(1-m)>0 => 1<m<7
Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)
a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0
hay m<-1
b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)
\(\frac{x-1}{x-m}-\frac{x+2}{x+m}=0\) (ĐK: \(x\ne\pm m\))
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+m\right)-\left(x+2\right)\left(x-m\right)}{\left(x-m\right)\left(x+m\right)}=0\)
\(\Rightarrow\left(x^2+mx-x-m\right)-\left(x^2-mx+2x-2m\right)=0\)
\(\Leftrightarrow\left(2m-3\right)x=-m\) (1)
- Với \(2m-3=0\Leftrightarrow m=\frac{3}{2}\)(1) vô nghiệm.
- Với \(2m-3\ne0\Leftrightarrow m\ne\frac{3}{2}\)ta có:
(1) \(\Leftrightarrow x=\frac{-m}{2m-3}\).
Để \(x\)là số nguyên thì \(-\frac{m}{2m-3}\inℤ\Rightarrow\frac{-2m}{2m-3}=\frac{-2m+3}{2m-3}-\frac{3}{2m-3}=1-\frac{3}{2m-3}\inℤ\).
Tương đương với \(\frac{3}{2m-3}\inℤ\Leftrightarrow2m-3\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow m\in\left\{0,1,2,3\right\}\).
Thử lại và đối chiếu điều kiện ta được \(m\in\left\{3\right\}\)thỏa mãn.