K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

 

x+y+xy=3

=>x+y+xy+1=3+1

=>(x+1)+(xy+y)=4

=>(x+1)+y.(x+1)=4

=>(x+1)(y+1)=4=1.4=(-1).(-4)=4.1=(-4).(-1)=2.2=(-2).(-2)

Ta có bảng sau:

x+11-14-42-2
y+14-41-12-2
x0-23-51-3
y3-50-21-3

Vậy (x;y) : (0;3);(-2;-5);(3;0);(-5;-2);(1;1);(-3;-3)

19 tháng 10 2016

Ta có:\(x\left(x+1\right)=y^2+1\Leftrightarrow x^2+x=y^2+1\Leftrightarrow4x^2+4x+1=4y^2+5\)

\(\Leftrightarrow\left(2x+1\right)^2-4y^2=5\Leftrightarrow\left(2x+2y+1\right).\left(2x-2y+1\right)=5\)

Do x,y thuộc Z nên  2x+2y+1 và 2x-2y+1 là ước của 5

Ta có bảng giá trị :

2x+2y+115-1-5
2x-2y+151-5-1
x11-2-2
y-111-1

Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(1;1\right);\left(-2;1\right);\left(-2;-1\right)\right\}\)

13 tháng 7 2017

\(x^2+2xy+2y^2=7.\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+y^2=7\)

\(\Leftrightarrow\left(x+y\right)^2+y^2=7\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2>0\\y^2>0\end{cases}}\)nên \(y^2< 7\)

Mà y nguyên dương nên suy ra \(\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}\Rightarrow}\orbr{\begin{cases}\left(x+y\right)^2=7-1=6\\\left(x+y\right)^2=7-4=3\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=\sqrt{6}\\x+y=\sqrt{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-1\left(khongthoaman\right)\\y=\sqrt{3}-2\left(khongthoaman\right)\end{cases}}}\)

Vậy không có cặp x, y nào thỏa mãn đề bài

12 tháng 7 2017

Sai đề rùi bạn ơi phải là: \(x^2+2xy+y^2=7\)chứ !!!

8 tháng 6 2017

b) x - 2xy + y = 0 

<=> 2x - 4xy + 2y = 0 

<=> 2x - 4xy + 2y - 1 = -1 

<=> (2x - 4xy) - (1 - 2y) = -1 

<=> 2x(1 - 2y) - (1 - 2y) = -1 

<=> (2x - 1)(1 - 2y) = - 1 

<=> 2x - 1 = -1 và 1 - 2y = 1 

hoặc 2x - 1 = 1 và 1 - 2y = -1