(x+4)/(104)+(x+2)/(102)=(x+3)/(103)+(x+1)/(101)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)
\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)
Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)
\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(x=100\)
1+2x3+4x5+6x7+...+98+99x100+101x102+103x104+...+998+999x1000
tất cả các số này đều chia hết cho 2
k mình nha
2.3chia hết cho 2
4.5chia hết cho 2
......
999.1000chia hết cho 2
suy ra 2.3+4.5+6.7+....+999.1000 chia hết cho 2
98+988+1=1087 không chia hết cho 2
vậy dãy trên ko chia hết cho 2
tự sửa lại cách trình bày nhé
Ta có:\(y=\frac{101^{102}+1}{101^{102}+1}\). \(\Rightarrow\)\(101y=\frac{101\left(101^{102}+1\right)}{101^{103}+1}=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
\(x=\frac{101^{103}+1}{101^{104}+1}\Rightarrow101x=\frac{101\left(101^{103}+1\right)}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=1+\frac{100}{101^{104}+1}\) Vì \(\frac{100}{101^{103}+1}>\frac{100}{101^{104}+1}\)nên \(1+\frac{100}{101^{^{103}}+1}>1+\frac{100}{101^{104}+1}\)hay 101y>101x. Suy ra y>x
\(\dfrac{x+4}{104}+\dfrac{x+2}{102}=\dfrac{x+3}{103}+\dfrac{x+1}{101}\\ \Leftrightarrow\left(\dfrac{x+4}{104}-1\right)+\left(\dfrac{x+2}{102}-1\right)=\left(\dfrac{x+3}{103}-1\right)+\left(\dfrac{x+1}{101}-1\right)\\ \Leftrightarrow\dfrac{x-100}{104}+\dfrac{x-100}{102}-\dfrac{x-100}{103}-\dfrac{x-100}{101}=0\\ \Leftrightarrow\left(x-100\right)\left(\dfrac{1}{104}+\dfrac{1}{102}-\dfrac{1}{103}-\dfrac{1}{101}\right)=0\\ \Leftrightarrow x-100=0\left(vì.\dfrac{1}{104}+\dfrac{1}{102}-\dfrac{1}{103}-\dfrac{1}{101}\ne0\right)\\ \Leftrightarrow x=100\)