Tìm số tự nhiên x,y thỏa \(x^x+\left(xy\right)^y=5489855287\) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyên Đinh Huynhkhông biết thì thôi đừng có trả lời mất công bạn vovanninh phải đọc
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}+\frac{1}{xy}\Leftrightarrow\frac{x+y}{xy}=\frac{xy+3}{3xy}\Leftrightarrow\frac{3x+3y}{3xy}=\frac{xy+3}{3xy}\Leftrightarrow3x+3y=xy+3\Leftrightarrow\left(x-3\right)\left(y-3\right)=6\)
Vì x,y là số tự nhiên nên x - 3 và y - 3 thuộc ước của -6 mà ước của -6 là +-1; +-2; +-3; +-6
Ta có bảng:
x-3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
y-3 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
x | -3 (loại) | 0 (loại) | 1 | 2 | 4 | 5 | 6 | 9 |
y | 2 | 1 | 0 (loại) | -3 (loại) | 9 | 6 | 5 | 4 |
Vậy có 4 cặp là ......
a)\(5x-xy=12\)
\(\Leftrightarrow x\left(4x-y\right)=12\)
<=>x và 4x-y thuộc Ư(12)=...
thay vào làm
b) \(2x+11=y\left(x+3\right)\)
\(\Rightarrow2x+11-xy-3y=0\)
\(\Rightarrow\left(2x-xy\right)+11-3y=0\)
\(\Rightarrow x\left(2-y\right)+6-3y=-5\)
\(\Rightarrow x\left(2-y\right)+3\left(2-y\right)=-5\)
\(\Rightarrow\left(x+3\right)\left(2-y\right)=-5\)
\(\Rightarrow x+3;2-y\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
Xét \(x+3=1\Rightarrow x=-2\Rightarrow2-y=5\Rightarrow y=-3\)(loại vì \(x,y\in N\))
Xét \(x+3=-1\Rightarrow x=-4\Rightarrow2-y=-5\Rightarrow y=7\)(loại vì \(x,y\in N\))
Xét \(x+3=5\Rightarrow x=2\Rightarrow2-y=1\Rightarrow y=1\) (thỏa mãn)
Xét \(x+3=-5\Rightarrow x=-8\Rightarrow2-y=-1\Rightarrow y=3\)(loại vì \(x,y\in N\))
Vậy pt có nghiệm (x,y)=(2;1) thỏa mãn
Bài 1:Nếu \(a=0\Rightarrow b^2=289\Rightarrow b=17\)(thỏa mãn)
Nếu \(a\ge1\) thì b\(\ge1\)nên b có dạng \(5k,5k+1,5k+2,5k+3,5k+4\)
Xét b=5k thì \(b^2=25k^2⋮5\)
Xét b=5k+1 thì \(b^2=\left(5k+1\right)^2=25k^2+10k+1\) chia 5 dư 1
Xét b=5k+2 thì \(b^2=\left(5k+2\right)^2=25k^2+20k+4\) chia 5 dư 4
Xét b=5k+3 thì \(b^2=\left(5k+3\right)^2=25k^2+30k+9\) chia 5 dư 4
Xét b=5k+4 thì \(b^2=\left(5k+4\right)^2=25k^2+40k+16\) chia 5 dư 1
Vậy với mọi \(b\ge1\) thì \(b^2\) chia 5 có số dư là 0,1,4
Mặt khác:\(a\ge1\Rightarrow10^a⋮5\)\(\Rightarrow10^a+288\) chia 5 dư 3 mà \(b^2\) chia 5 chỉ dư 0,1,4 (vô lý)
Vậy a=0,b=17 thỏa mãn
Bài 2:Vì \(\hept{\begin{cases}\left|x-3y+1\right|\ge0\\-\left(2y-0,5\right)^2\le0\end{cases}}\) mà \(\left|x-3y+1\right|=-\left(2y-0,5\right)^2\)
\(\Rightarrow\hept{\begin{cases}\left|x-3y+1\right|=0\\-\left(2y-0,5\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+1=0\\2y=0,5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+1=3y\\y=\frac{0,5}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+1=3y\\y=\frac{1}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+1=\frac{3}{4}\\y=\frac{1}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=\frac{1}{4}\end{cases}}\)
Bài 2 :
Ta có :
\(\left|x-3y+1\right|\ge0\)
\(-\left(2y-0,5\right)^2< 0\)
Mà \(\left|x-3y+1\right|=-\left(2y-0,5\right)^2\)
Vậy không có giá trị nào của x và y thoã mãn đề bài
Chúc bạn học tốt ~
bài này tui giải bừa nha
\(x^{x-y}\left(1+y^y\right)=5489855287\)=7^6.46663
sau đó xét thôi
TH1: x=7,x-y=6=> y=1 vô lí
đấy cứ thế cho đến khi x-y=0 thì thôi