Toán lớp 8 về phân tích đa thức thành nhân tử... mong mọi người giúp đỡ
x^2 + 2y^2 - 2y - 2xy + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$y-x^2y-2xy^2-y^3=y(1-x^2-2xy-y^2)$
$=y[1-(x^2+2xy+y^2)]=y[1-(x+y)^2]=y(1-x-y)(1+x+y)$
a) \(2xy-y+6x-3=\left(2xy+6x\right)-\left(y+3\right)=2x\left(y+3\right)-\left(y+3\right)=\left(2x-1\right)\left(y+3\right)\)
b) \(x^2-2xy-x+2y=\left(x^2-2xy\right)-\left(x-2y\right)=x\left(x-2y\right)-\left(x-2y\right)=\left(x-1\right)\left(x-2y\right)\)
\(=x\left(x+2y\right)-\left(x+2y\right)=\left(x+2y\right)\left(x-1\right)\)
x^2 + 2y^2 - 2y - 2xy + 1 = (x^2 - 2xy + y^2) + (y^2 - 2y + 1) = (x - y)^2 + (y - 1)^2
\(x^2+2y^2-2y-2xy+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2\)
\(=\left(x-y\right)^2-\left(1-y\right)^2\)
\(=\left(x-y-1+y\right)\left(x-y+1-y\right)\)
\(=\left(x-1\right)\left(x-2y+1\right)\)