cho hàm số \(f\left(x\right)=2mx-mx^3\). tìm m để \(f'\left(1\right)\le1\)?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)
\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(mx\right)=m\)
Hàm liên tục tại x=1 khi: \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=f\left(1\right)\)
\(\Leftrightarrow m=\dfrac{1}{4}\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)
\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(ax+2\right)=a+2\)
Hàm liên tục tại x=1 khi:
\(a+2=\dfrac{1}{4}\Rightarrow a=-\dfrac{7}{4}\)
\(f\left(-2\right)=-2m+1\)
\(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=\lim\limits_{x\rightarrow-2^+}\dfrac{x^2-3x+2}{x^3+8}=\lim\limits_{x\rightarrow-2^+}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\lim\limits_{x\rightarrow-2^+}\dfrac{x-1}{x^2-2x+4}=\dfrac{-2-1}{4-2.\left(-2\right)+4}=-\dfrac{1}{4}\)
\(f\left(-2\right)\ne\lim\limits_{x\rightarrow-2^-}f\left(x\right)\Leftrightarrow-2m+1\ne-\dfrac{1}{4}\Leftrightarrow m\ne\dfrac{5}{8}\)
\(f'\left(x\right)=2m-3mx^2\Rightarrow f'\left(1\right)=2m-3m=-m\)
\(\Rightarrow-m\le1\Rightarrow m\ge-1\)