K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

sao nhiều bạn biết làm mà không giúp bạn này z
chắc bạn ấy đang cần gấp lắm á, giúp bạn ấy di nào!!!

18 tháng 3 2022

a) Xét ∆ABD và ∆ACD, ta có
AB=AC(GT)
<ABD=<ACD=90°
AD cạnh chung
⟹ ∆ABD=∆ACD(c.h-cgv) ⟹<BAD=<CAD( 2 góc tương ứng)
Xét ∆ABC và ∆ACD, ta có:
AB=AC(GT)
<BAD=<CAD(CMT)
AC cạnh chung
⟹ ∆ABC=∆ACD (c.g.c)
b) Ta có : BD=DC(Vì ∆ABD=∆ACD (CM ở a)) <1>
                BC=DC( Vì ∆ABC=∆ACD(CM ở a)) <2>
Từ <1> và <2> 
⟹ BD=DC=BC
⟹ ∆BDC là tam giác đều
c) Ta có: AD>BD(Vì AD là cạnh huyền tương ứng của tam giác vuông ABD)
               BC=BD( Vì ∆BDC là tam giác đều (CM ở b))⟹2BC>BD
⟹ 2BC=+AD>AB+BD

a: Xét ΔDAB vuông tại B và ΔDAC vuông tại C có

DA chung

AB=AC

Do đó:ΔDAB=ΔDAC

b: Ta có: ΔDAB=ΔDAC

nên DB=DC

=>ΔDBC cân tại D

mà \(\widehat{BDC}=60^0\)

nên ΔDBC đều

5 tháng 4 2022

còn các phần khác ko bn

 

20 tháng 3 2021

+)ΔABC cân tại A

=>AB=AC;∠ABC=∠ACB

+)Xét ΔMAB(∠MBA=90o) và ΔMAC (∠MCA=90o) có:

AM là cạnh chung AB=AC(cmt)

=> ΔMAB=ΔMAC(ch.cgv)

Chúc bn học tốt

 

20 tháng 3 2021

cảm ơn bạn nhiều nhaa

 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)

a) Xét ΔABD vuông tại B và ΔACD vuông tại C có 

AD chung

AB=AC(ΔABC cân tại A)

Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)

mà tia AD nằm giữa hai tia AB,AC

nên AD là tia phân giác của \(\widehat{BAC}\)

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

27 tháng 3 2020

C A B H M

a) Xét ∆CMA và ∆ CMB có:

AC=BC (∆ABC cân tại C)

\(\widehat{CAM}=\widehat{CBM}=90^o\)

CM chung

=> ∆CMA = ∆CMB (ch-gn)

b) Vì ∆CMA=∆CMB => \(\widehat{ACM}=\widehat{BCM}\)(2 góc tương ứng)

=> CH là phân giác \(\widehat{ACB}\)

∆ACB cân tại C => CH cũng là trung tuyến

=> AH=BH

c) Ta có: \(\widehat{CBA}=\frac{180^o-\widehat{ACB}}{2}=\frac{180^o-120^o}{2}=\frac{60^o}{2}=30^o\)

Mà \(\widehat{CBA}+\widehat{ABM}=90^o\)

=> \(\widehat{AMB}=90^o-\widehat{CBA}=90^o-30^o=60^o\)

∆CMA =∆CMB => AM=MB => ∆AMB cân tại M

=> ∆AMB là ∆ đều

a: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

Do đó; ΔABD=ΔACD

a: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

Do đó: ΔABD=ΔACD