K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2022

Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau tại G gọi I và K theo thứ tự là trung điểm của GB GC

a tứ giác BIKC lF hình gì ? Vì sao?

  b tú giác EDKI là hình gì ? Vì sao? 

 

9 tháng 2 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong  ∆ ABC, ta có:

E là trung điểm của AB (gt)

D là trung điểm của AC (gt)

Nên ED là đường trung bình của  ∆ ABC

⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)

* Trong ∆ GBC, ta có:

I là trung điểm của BG (gt)

K là trúng điểm của CG (gt)

Nên IK là đường trung bình của  ∆ GBC

⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)

Từ (l) và (2) suy ra: IK // DE, IK = DE.

29 tháng 6 2017

Đường trung bình của tam giác, hình thang

7 tháng 10 2020

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ΔABC, ta có:

E là trung điểm của AB (gt)

D là trung điểm của AC (gt)

Nên ED là đường trung bình của ΔABC

⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)

* Trong ΔGBC, ta có:

I là trung điểm của BG (gt)

K là trúng điểm của CG (gt)

Nên IK là đường trung bình của ΔGBC

⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)

Từ (l) và (2) suy ra: IK // DE, IK = DE.

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(1)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra DE//IK và DE=IK

20 tháng 8 2016

Xét \(\Delta ABC\) có :

  \(AE=EB\left(gt\right)\)

  \(AD=DC\left(gt\right)\)

\(\Rightarrow ED\) là đường trung bình 

\(\Rightarrow ED\)//\(BC\) và \(ED=\frac{1}{2}BC\)         ( 1 ) 

Xét \(\Delta GBC\) có :

  \(GI=IB\left(gt\right)\)

   \(GK=KC\left(gt\right)\)                                  

\(\Rightarrow IG\) là đường trung bình 

\(\Rightarrow IG\)//\(BC\) và \(IG=\frac{1}{2}BC\)            ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow DE\)//\(IK\) và \(DE\)=\(IK\)

20 tháng 8 2016

A E B D C I G K

+) Tam giác ABC có D; E là trung điểm của AB; AC

=> DE là đường tring bình của tam giác => DE// BC và DE = BC/2   (1)

+) Tam giác GBC có I: K là Trung điểm của GB; GC 

=> IK là đường trung bình của tam giác

=> IK //BC và IK = BC/ 2    (2)

Từ (1)(2) => DE//IK và DE = IK

26 tháng 10 2022

Cho tam giác abc có hai đường trung tuyến BDvà CEcắt nhau tại G gọi I,K theo thứ tự là trung điểm của GB và GC chứng minh rằng DE song song với IK và DE bằng IK Tam giác DEK bằng tam giác IKE

18 tháng 7 2021

△ABC có:
- D là trung điểm của AC (gt)
- E là trung điểm của AB (gt)
=> DE là đường trung bình của △ABC
=> DE // BC
△GBC có:
- I là trung điểm của GB (gt)
- K là trung điểm của GC (gt)
=> IK là đường trung bình của △GBC
=> IK // BC
Mà DE // BC, IK // BC => DE // IK (đpcm)


Do DE là đường trung bình của △ABC => DE = 1/2 BC
IK là đường trung bình của △GBC => IK = 1/2 BC
Từ đó suy ra: DE = IK (đpcm)

Xét ΔABC có

E là trung điểm của AB(gt)

D là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔGBC có 

I là trung điểm của GB(gt)

K là trung điểm của GC(gt)

Do đó: IK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra DE//IK và DE=IK(Đpcm)