tìm x,y,z\(\inℕ^∗\) biết: \(\left(1+\frac{1}{x}\right).\left(1+\frac{1}{y}\right).\left(1+\frac{1}{z}\right)=2\)
các pạn giúp mk nha:3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất dãy tỉ số bằng nhau :
\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
( Vì x + y + z \(\ne\)0 ) Do đó, x +y + z = 0,5
Thay kết quả này vào đầu đề bài ta được :
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
tức là
\(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)
Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{-5}{6}\)
\(ĐK:x,y,z\ne0\)
Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)
\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0
Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)
Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)
Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).
\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)
\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)
Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\) (*)
Đặt (x;y;z) -------> \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)
Suy ra (*) <=> \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)
Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)
Đẳng thức xảy ra <=> x = y = z = 1
Ta có
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)
\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)
Kết hợp với điều kiện ban đầu thì
GTNN của A là 0 đạt được khi
\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)
\(\left(1+\frac{1}{x}\right).\left(1+\frac{1}{y}\right).\left(1+\frac{1}{z}\right)=2\)
Giả sử \(x\ge y\ge z>0\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)
\(\Rightarrow1+\frac{1}{x}\le1+\frac{1}{y}\le1+\frac{1}{z}\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{z}\right)\le \left(1+\frac{1}{z}\right)^3\)
\(\Rightarrow2\le\left(1+\frac{1}{z}\right)^3\)
\(\Rightarrow1+\frac{1}{z}\ge\sqrt[3]{2}\)
\(\Rightarrow\frac{1}{z}\ge\sqrt[3]{2}-1\)
\(\Rightarrow z\le\frac{1}{\sqrt[3]{2}-1}< 4\)
Mà z thuộc N* \(\Rightarrow z\in\left\{1;2;3\right\}\)
TH1 : \(z=1\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{1}\right)=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1\)
Ta có : \(1+\frac{1}{x}>1;1+\frac{1}{y}>1\)\(\Rightarrow\left(\frac{1}{x}+1\right)\left(1+\frac{1}{y}\right)>1\left(lọai\right)\)
TH2 : \(z=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1+\frac{1}{2}\right)=2\)
\(\Rightarrow\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{4}{3}\)
Ta có : \(\left(1+\frac{1}{y}\right)^2\ge\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=\frac{4}{3}\)
\(\Rightarrow1+\frac{1}{y}\ge\sqrt{\frac{4}{3}}\)
\(\Rightarrow\frac{1}{y}\ge\frac{2\sqrt{3}}{3}-1\)
\(\Rightarrow y\le\frac{1}{\frac{2\sqrt{3}}{3}-1}< 7\)
\(\Rightarrow y\in\left\{1;2;3;4;5;6\right\}\)
Nếu y = 1 \(\Rightarrow\left(1+1\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = -3 ( loại )
Nếu y = 2 \(\Rightarrow\left(1+\frac{1}{2}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = -9 ( loại )
Nếu y = 3 \(\Rightarrow\left(1+\frac{1}{3}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > \(x\in\varnothing\)
Nếu y = 4 \(\Rightarrow\left(1+\frac{1}{4}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 15 ( tm )
Nếu y = 5 \(\Rightarrow\left(1+\frac{1}{5}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 9 ( tm )
Nếu y = 6 \(\Rightarrow\left(1+\frac{1}{6}\right)\left(1+\frac{1}{x}\right)=\frac{4}{3}\)
= > x = 7 ( tm )
TH3 : z =3 thì bạn làm tương tự nhé
hiiiiiiiiiiiiiiiiiiiiiiiiiiii