Một người kéo thùng hàng nặng 89kg lên cao 5m trong thời gian 15s, bỏ qua ma sát. Tính công, công suất của người đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công gây ra
\(A=P.h=150.5=750\left(J\right)\)
Công suất sinh ra là
\(P=\dfrac{A}{t}=\dfrac{750}{20}=37,5W\)
Chọn hệ trục tọa độ Oxy như hình vẽ. Gọi \(\overrightarrow{F_k}\) là lực kéo tác dụng lên sợi dây, \(\overrightarrow{P}\) và \(\overrightarrow{N}\) lần lượt là trọng lực tác dụng lên vật. Ta phân tích \(\overrightarrow{F_k}\) thành 2 lực \(\overrightarrow{F_{k_x}}\) và \(\overrightarrow{F_{k_y}}\) trên các trục Ox, Oy.
a) Công của lực kéo là \(A_k=F_k.s.cos\left(\overrightarrow{F_k},\overrightarrow{s}\right)=100.20.cos45^o=1000\sqrt{2}\left(J\right)\)
b) Gọi \(\overrightarrow{F_{ms}}\) là lực ma sát tác dụng lên vật. Chọn chiều dương là chiều chuyển động của vật
Áp dụng định luật II Newton:
\(\overrightarrow{F_k}+\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a}\) (1)
Chiếu (1) lên Oy: \(N=P-F_{k_y}=400-F_k.sin45^o=400-175\sqrt{2}\left(N\right)\)
Do đề bài không nói gì về loại chuyển động của vật nên mình sẽ xem đây là chuyển động nhanh dần đều nhé. Khi đó, ta sẽ có \(s=\dfrac{1}{2}at^2\Rightarrow20=\dfrac{1}{2}a.180^2\) \(\Rightarrow a=\dfrac{1}{810}\left(m/s^2\right)\).
Chiếu (1) lên Ox, ta được \(F_{k_x}-F_{ms}=m.a\Rightarrow F_{ms}=F_{k_x}-m.a=350.cos45^o-400.\dfrac{1}{180}\)\(=170\sqrt{2}-\dfrac{20}{9}\) (N)
\(\Rightarrow A_{ms}=-\left(170\sqrt{2}-\dfrac{20}{9}\right).20\approx-4763,88\left(J\right)\)
1/2p = 30s
Công gây ra là
\(A=P.h=10m.h=10.50.4=2000\left(J\right)\)
Công suất sinh ra là
\(P=\dfrac{A}{t}=\dfrac{2000}{30}=66,6W\)
Công do lực ma sát sinh ra là
\(A'=F_{ms}.l=30.10=300\left(J\right)\)
Hiệu suất là
\(H=\dfrac{A}{A''}.100\%=\dfrac{2000}{2000+300}.100\%\approx87\%\)
Công của người đó:
\(A=Fs=300\cdot4=1200\left(J\right)\)
Công suất của người đó:
\(P=\dfrac{A}{t}=\dfrac{1200}{40}=30\)(W)
Dùng một ròng rọc động cho ta lợi hai lần về lực và thiệt hai lần về đường đi.
\(\Rightarrow\left\{{}\begin{matrix}F=\dfrac{1}{2}P=\dfrac{1}{2}\cdot300=150N\\s=\dfrac{1}{2}h=\dfrac{1}{2}\cdot4=2m\end{matrix}\right.\)
Công người đó nâng vật lên cao:
\(A=F\cdot s=150\cdot2=300J\)
Công suất thực hiện:
\(P=\dfrac{A}{t}=\dfrac{300}{40}=7,5W\)
Đáp án D
- Trọng lượng thùng hàng là:
50.10 = 500 (N)
- Áp dụng công thức:
- Lực cần thiết để kéo thùng hàng là:
Tóm tắt
\(m=2500kg\)
\(\Rightarrow P=10.m=10.2500=25000N\)
\(h=12m\)
\(t=2p=120s\)
_____________________
a) \(A=?J\)
\(P\left(hoa\right)=?W\)
b) Giải thích?
Giải
a) Công của cần cẩu là:
\(A=P.h=25000.12=300000J\)
Công suất của cần cẩu là:
\(P\left(hoa\right)=\dfrac{A}{t}=\dfrac{300000}{120}=2500W\)
b) Con số 2500W cho ta biết trong 1 giây, cần cẩu thực hiện được công là 2500J
1.Công thực hiện được A=P.h=10.m.h=650.10.20=130000 J
=> Công suất của ng công nhân là : P=A/t=130000/120=1083.33 W
2.Công thực hiện được A=F.s=70.800=56000 J
Công suất của người đó là : \(P=\dfrac{A}{t}=\dfrac{F.s}{\dfrac{s}{v}}=F.v=\)70.3,5=245 W
Công của ngừoi đó là
\(A=P.h=10m.h=80.10.5=4000\left(J\right)\)
Công suất là
\(P=\dfrac{A}{t}=\dfrac{4000}{15}=266,7W\)
Công của người đó là:
\(A=P.h=10m.h=10.89.5=4450\left(J\right)\)
Công suất người đó là:
\(P=\dfrac{A}{t}=\dfrac{4450}{15}=\dfrac{890}{3}\left(W\right)\)