Cho tam giác abc ko cân tại a, có phân giác góc ngoài tại đỉnh a cắt đường thẳng bc tại điểm m. Khi đó ta có:
A. MB/MC=AM/AC
B. MB/MC=AC/AB
C. MC/MB=AC/AB
D. MC/MB=AC/AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
kẻ thêm MK⊥BC⊥BC
ta có ΔABM=ΔKBM(ch.cgn)ΔABM=ΔKBM(ch.cgn)
lí do vì góc B1=góc B2(do BM phân giác),
góc BKM=góc BAM=90oo, cạnh BM chung
từ đó=>AM=MK(các cạnh t ứng)(1)
chứng minh ΔMND=ΔMAB(ch.cgn)ΔMND=ΔMAB(ch.cgn)
do góc M1=M2(đối đỉnh), MB=MD(gt), góc DNM=góc BAM(=90 độ)
=>AM=MN(2) từ(1)(2)=>MN=MK
trong tam giác MKC vuông tại K thì cạnh huyền MC lớn nhất
=>MC>MK<=>MC>MN(dpcm)
zì tam giác ABC có tia phân giác AM
=>\(\frac{BM}{MC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)(1)
mà BM+MC=11 (2)
Từ 1 zà 2 ta có hệ phương trình
\(\hept{\begin{cases}MB+MC=11\\\text{4MB-3MC=0 }\end{cases}}\)
\(\hept{\begin{cases}MB=\frac{33}{7}\\MC=\frac{44}{7}\end{cases}}\)
a: Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC
hay MB=MC
C
có thể vẽ hình ra được không ạ?