Cho tam giác ABC vuông tại B, đường phân giác góc C cắt AB tại D, đường thẳng kẻ từ A vuông góc với CD kéo dài tại H.
A.Cm tam giác HAD và tam giác BCD đồng dạng
B.Cm AH^2=HD.HC
C.Cho biết AB=6cm,AC=10cm.Tính độ dài đoạn thẳng BC và AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8(cm)
b) Xét ΔABH vuông tại H và ΔEBH vuông tại H có
BH chung
\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABH=ΔEBH(Cạnh góc vuông-góc nhọn kề)
Suy ra: BA=BE(Hai cạnh tương ứng)
Xét ΔABE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
a: Xét ΔMBN và ΔMCA có
góc MBN=góc MCA
góc BMN=góc CMA
=>ΔMBN đồng dạng với ΔMCA
b: AB/AC=MB/MC=MN/MA
a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDMC
=>AB/DM=BC/MC=AC/DC
=>6/DM=10/MC=8/3
=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm
b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
góc B chung
=>ΔABC đồng dạng với ΔMBE
=>BA/BM=BC/BE
=>BA*BE=BM*BC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
CD là phângíac
=>AD/AC=DB/CB
=>AD/3=DB/5=(AD+DB)/(3+5)=8/8=1
=>AD=3cm; BD=5cm