Chứng minh:
A=1+4+4 mũ 2 +...+4 mũ 58+4 mũ 59 chia hết cho 85
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
a) A = 21 + 22 + 23 + 24 +...+ 22010
=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)
=> A = 6 + 22.6 + ... + 22008.6
=> A = 6 . (1 + 22 + ... + 22008) \(⋮\)3 => A \(⋮\)3.
A = 21 + 22 + 23 +...+ 22010
=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)
=> A = 14 + ... + 22007.(2 + 22 + 23)
=> A = 14 + ... + 22007.14
=> A = 14.(1+...+22007) \(⋮\)7 => A \(⋮\)7
b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.
Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.
Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.
Chúng bạn học tốt.
a, A =2 + 22 +2 3+ 2 4 + ..... + 2 19 + 2 20
A =(2 + 22 )+(2 3 + 2 4 )+ ..... + (2 19 + 2 20)
A =2 (1 + 2 )+2 3(1 + 2 )+ ..... +2 19 (1 + 2)
A =2 .3+2 3.3+ ..... +2 19 .3 = 3.(2 +2 3+ ..... +219)
Vì 3 chia hết cho 3 => 3.(2 +2 3+ ..... +219) chia hết cho 3=> A chia hết cho 3
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
a. A=1+4+42+43+...+458+459 chia hết cho 85
A=(1+4)(4^2+4^3)...........(4^58+4^59):5
A=(1+4)4^2(1+4)............4^58(1+4)
A=5.4^2.5.............4^58.5 chia hết cho 5
chia hết cho 85 cũng tương tự chỉ thế số thôi
+) CM chia hết cho 5
\(A=\left(1+4\right)+4^2\left(1+4\right)+....+4^{58}\left(1+4\right)\)
=> A chia hết cho 5
+) CM chia hết cho 17
\(A=\left(1+16\right)+4\left(1+16\right)+...+4^{57}\left(1+16\right)\)
=> A chia hết cho 17
Mà (5;17)=1
=> A chia hết cho 5x17=85
=> Đpcm
chuk bn hok tốt