K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

k cho mình

15 tháng 7 2016

mình chịu rồi

11 tháng 7 2016

Ta đã biết 1 số tự nhiên chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2015

Có 2015 loại số dư mà có 2016 số tự nhiên nên theo nguyên lí Đi - rích - lê sẽ có ít nhất 2 số cùng dư, hiệu của chúng chia hết cho 2015

=> đpcm

Ủng hộ mk nha ^_-

11 tháng 7 2016

Cảm ơn bạn nhé !

5 tháng 1 2017

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

8 tháng 10 2017

xl mk thấy tên bn ghê wa

3 tháng 12 2015

a. +) Nếu a, b đều chẵn: a, b có dạng: 2k ( k là số tự nhiên bất kì)

Ta có: a.b.(a+b) = 2k.2k.(2k+2k)=2k.2k.4k chia hết cho 2

+) Nếu a, b đều lẻ: a, b có dạng: 2k+1 (k là stn bất kì)

Ta có: a.b(a+b)= (2k+1).(2k+1).(2k+1+2k+1)=(2k+1).(2k+1).(4k+2)=(2k+1).(2k+1).2.(2k+1) chia hết cho 2

+) Nếu a, b một chẵn, một lẻ: a, b có dạng: 2k và 2k+1

Ta có: a.b(a+b)=2k.(2k+1).(2k+2k+1) =2k.(2k+1).(4k+1) chia hết cho 2

Vậy a.b(a+b) luôn chia hết cho 2.

b. a+b không chia hết cho 2

=> a, b là một chẵn một lẻ (vì lẻ + chẵn = lẻ không chia hết cho 2)

=> a.b là tích của 1 số chẵn và 1 số lẻ

=> a.b = 2k.(2k+1) chia hết cho 2

Vậy...

2 tháng 1 2022

\(a:15\) dư 13 \(\Rightarrow a=15k+13\left(k\in N\text{ }\right)\)

\(b:12\) dư 8 \(\Rightarrow b=12k+8\left(k\in N\right)\)

\(\Rightarrow a+b=15k+12k+13+8=27k+21=3\left(9k+7\right)⋮3\)