K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=15cm

b: Xét ΔABM có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABM cân tại B

c: Xét tứ giác ABNC có

K là trung điểm của BC

K là trung điểm của AN

Do đó: ABNC là hình bình hành

Suy ra: CN=AB

mà AB=BM

nên CN=BM

16 tháng 3 2022

cảm ơn bạn nhiều nhé ^^

25 tháng 4 2022

a. Xét ΔABC vuông tại A, có:

AB2 + AC= BC2 (Định lý Py-ta-go)

⇒ 62 + 82 = BC2 (thay số)

⇒ BC2 = 100

⇒ BC = 10

25 tháng 4 2022

b) Có: AH vuông góc với BC (gt)

⇒ góc AHB = góc AHD (tính chất ....)

Xét ΔAHB và ΔAHD, có:

BH = HD (gt)

góc AHB = AHD (cmt)

AH chung

⇒ ΔAHB = ΔAHD (c.g.c)

⇒ AB = AD (cặp cạnh tương ứng) (đpcm)

18 tháng 12 2021

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

26 tháng 1 2022

a, Xét tam giác ABC cân tại A có AH vuông BC 

=> AH đồng thời là đường trung tuyến 

=> BH = CH 

b, Theo Pytago tam giác AHB vuông tại H

\(BH=\sqrt{AB^2-AH^2}=6cm\)

=> BC = 2BH = 12 cm 

c, Vì tia đối của BC là tia BM 

=> BM = BC 

Vì tia đối của CB là tia CN 

=> CN = BC 

=> BM + BH = CN + CH 

hay H là trung điểm MN 

Xét tam giaccs AMN có : 

AH là đường cao 

AH là đường trung tuyến 

=> AH đồng thời phân giác 

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
28 tháng 2 2023

loading...

a) trong ΔABC, có góc AHB là góc vuông

góc ABH là góc nhọn

⇒ góc AHB > góc ABH

⇒ AB > AH

b) M là trung điểm của AB và N là trung điểm của AC, mà AB = AC (2 cạnh bên của tam giác cân) ⇒ MB = NC

xét tam giác MBC và tam giác NCB, ta có : 

MB = NC (cmt)

góc B = góc C (2 góc đáy của 1 tam giác cân)

BC là cạnh chung

⇒  tam giác MBC = tam giác NCB (c-g-c)

⇒ MC = NB (2 cạnh tương ứng)

c) xét tam giác NAG và tam giác NCK , ta có : 

NA = NC (vì N là trung điểm của cạnh AC)

góc NAG = góc NCK (đối đỉnh)

NG = NK (gt)

=> tam giác NAG = tam giác NCK (c-g-c)

=> AG = CK (2 cạnh tương ứng)