K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

đa phần mn ko bt cách tính =vv h tui sẽ cho cách giải

 \(\text{Vì } QD \parallel AB,\text{ áp dụng định lý Talet, ta có: } \frac{AQ}{AC}=\frac{DC}{BC}(1)\)

\(\text{Vì } PD \parallel AC,\text{ áp dụng định lý Talet, ta có: } \frac{AP}{AB}=\frac{BD}{BC}(2)\)

\(\text{Từ (1), (2)} \implies \frac{AP}{AB} + \frac{AQ}{AC}=\frac{BD}{BC}+\frac{DC}{BC}=\frac{BC}{BC}=1 \text{ (đpcm)}\)

19 tháng 3 2022

Vì PD // AB, áp dụng địng lý Talet, ta có: \(\frac{AP}{AB}=\frac{BD}{BC}\)(1)

Vì QD // AB, áp dụng định lý Talet, ta có: \(\frac{AQ}{AC}=\frac{DC}{BC}\)(2)

Từ (1), (2) => \(\frac{AP}{AB}+\frac{AQ}{AC}=\frac{BD}{BC}+\frac{DC}{BC}=\frac{BC}{BC}=1\left(đpcm\right)\)

3 tháng 3 2020

A B C D E F

Thấy đề sai sai á :)) Hóng cách làm  vậy ....

6 tháng 12 2016

qua N kẻ đường thẳng song song với AB cắt BC tại K .

Vì EN song song với BK; NK song song với EB nên EB=NK;EN=BK (tính chất đoạn chắn)

nên NK=AD. Vì DM song song với BC nên góc( từ sau góc mình kí hiệu là >) DMA = >ACB . Vì NK song song với AB nên >A= >KNC \(\Rightarrow\) >B=>NKC Do đó ΔADM=ΔNKC (g.c.g). nên DM=KC

Suy ra DM+EN=BK+CK=BC(dpcm)

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. a) Chứng minh ED/AD + BF/BC = 1b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song...
Đọc tiếp

Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F. 

a) Chứng minh ED/AD + BF/BC = 1

b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.

Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.

a) Chứng minh CF = DK

b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.

Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.

Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.

Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.

6
17 tháng 3 2020

Bài 6 :

Tự vẽ hình nhá :)

a) Gọi O là giao điểm của AC và EF

Xét tam giác ADC có :

EO // DC => AE/AD = AO/AC (1)

Xét tam giác ABC có :

OF // DC

=> CF/CB = CO/CA (2)

Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm

Bài 7 :

A B C D G K M F E

a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)

Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG

Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM 

=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)

Từ (1) và (2) => CF / EF = DK / AD

Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È

=> CF = DK ( đpcm )

Bài 8 : 

A B C M N 38 11 8

Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )

Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :

AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38

=> 1140 = 19.AN + 722

=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )

=> NC = 38 - 12 = 26 ( cm )

4 tháng 2 2020

chắc sang năm mới làm xong mất 

3 tháng 5 2019

Từ N kẻ đường thẳng song song vói AB cắt BC tại K. Nối EK.

Xét ΔBEK và Δ NKE, ta có:

∠(EKB) =∠(KEN) (so le trong vì EN // BC)

EK cạnh chung

∠(BEK) =∠(NKE) (so le trong vì NK // AB))

Suy ra: Δ BEK = Δ NKE(g.c.g)

Suy ra: BE = NK (hai cạnh tương ứng)

EN = BK (hai cạnh tương ứng)

Xét Δ ADM và Δ NKC, ta có:

∠A =∠(KNC) (đồng vị vì NK // AB)

AD = NK ( vì cùng bằng BE)

∠(ADM) =∠(NKC) (vì cùng bằng góc B)

Suy ra: Δ ADM = Δ NKC(g.c.g)

Suy ra: DM = KC (hai cạnh tương ứng)

Mà BC = BK + KC. Suy ra: BC = EN + DM

Giải sách bài tập Toán 7 | Giải sbt Toán 7