K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B\left(x\right)=x^3+x^3+5x^2+x-2=2x^3+5x^2+x-2\)

17 tháng 3 2022

Cảm ơn bạn nha!

6 tháng 11 2018

P(x) = 2 + 5x2 – 3x3 + 4x2 –2x – x3 + 6x5

P(x) = 2 + (5x2+ 4x2) + (– 3x3– x3) – 2x + 6x5

P(x) = 2 + 9x2 – 4x3– 2x + 6x5

Sắp xếp các hạng tử của P(x) theo lũy thừa giảm của biến, ta có

P(x) = 6x5 – 4x3 + 9x2 – 2x + 2

a: \(C\left(x\right)=x^3+3x^2-x+6\)

\(D\left(x\right)=-x^3-2x^2+2x-6\)

b: Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)

d: \(C\left(x\right)+D\left(x\right)=x^2+x\)

a. C(x)=x3+3x2−x+6

D(x)=−x3−2x2+2x−6

b. Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c. C(2)=8+3⋅4−2+6=20−2+6=24

d. 

a: \(=2x^7-4x^4+x^3-x^2-x+5\)

Hệ số cao nhất là 2

Hệ số tự do là 5

9 tháng 8 2018

x7 – x4 + 2x3 – 3x4 – x2 + x7 – x + 5 – x3

= (x7 + x7) – (x4 + 3x4) + (2x3 – x3) – x2 – x + 5

= 2x7 – 4x4 + x3 – x2 – x + 5

Sắp xếp: 5 – x – x2 + x3 – 4x4 + 2x7

Hệ số cao nhất là 2, hệ số tự do là 5.

21 tháng 8 2018

 P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3

= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5

= – x6 + x4 – 4x3 + x2 – 5.

= – 5+ x2 – 4x3 + x4 – x6

Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1

= 2x5 – x4 + (x3 – 2x3) + x2 + x –1

= 2x5 – x4 – x3 + x2 + x –1.

= –1+ x + x2 – x3 – x4 + 2x5

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)

4 tháng 5 2023

\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)

4 tháng 5 2023

`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`

`= (2x^3 -x^3)+x^2+(-x+3x) +5`

`= x^3 +x^2 + 2x+5`

`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`

`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`

`= -x^3 -x^2+3x+10`

`b,M(x)=P(x)+Q(x)`

`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5+(-x^3)  -x^2+3x+10`

`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`

`= 5x+15`

`N(x)=P(x)-Q(x)`

`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`

`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`

`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`

`=2x^2 -x-5`